Journal of Circular Economy

An applied scholarly journal on circular economy

Volume 2, Issue 1

September 2024

View PDF

We are keen to help you publish your research.

If you have any questions about the Journal of Circular Economy, please reach out to editor@circulareconomyjournal.org

Digital Fabrication for Circular Timber Construction: A Case Study

Dominik Reisach, Stephan Schütz, Jan Willmann, Sven Schneider

Under a Creative Commons license

Abstract

The European timber industry has successfully implemented the cascading utilization of wood for several decades, downcycling material resources at the end of each product cycle by turning them into new industrial commodities through additional manufacturing procedures. In its current implementation, this approach is effective in keeping wooden materials in circulation. However, a significant amount of material still reaches the end-of-life stage through incineration prematurely, constituting a considerable waste of valuable resources. Therefore, we propose repurposing low-quality, low-engineered waste wood for architectural applications to avoid unnecessary downcycling processes. Specifically, we suggest a digital design and fabrication method to build tectonic structures using repurposed timber offcuts. As a case study, we present a pavilion structure built at a 1:1 scale, demonstrating the potential of digital technologies for circular timber construction. Based on this case study, we discuss how digital fabrication and material grading can foster a transition towards a circular built environment.

Keywords

Circular Economy, Circular Construction, Cascading Utilization, Waste Wood, Repurposing, Upcycling, Timber Manufacturing, Strength Testing, Digital Fabrication, Computational Design

References

Aagaard, A. K., & Larsen, N. M. (2020). Developing a fabrication workflow for irregular sawlogs. International Journal of Architectural Computing, 18(3), 270–283. https://doi.org/10.1177/1478077120906736

Allner, L., Kroehnert, D., & Rossi, A. (2020). Mediating Irregularity: Towards a Design Method for Spatial Structures Utilizing Naturally Grown Forked Branches. In C. Gengnagel, O. Baverel, J. Burry, M. Ramsgaard Thomsen, & S. Weinzierl (Eds.), Impact: Design With All Senses (pp. 433–445). Springer International Publishing. https://doi.org/10.1007/978-3-030-29829-6_34

Amtsberg, F., Huang, Y., Marshall, D. J. M., Moreno Gata, K., & Mueller, C. (2020). Structural Up-cycling: Matching Digital and Natural Geometry. 486–505. https://thinkshell.fr/wp-content/uploads/2019/10/AAG2020_25_Amtsberg.pdf

Augustynowicz, E., & Aigner, N. (2023). Building from Scrap: Computational Design and Robotic Fabrication Strategies for Spatial Reciprocal Structures from Plate-shaped Wooden Production Waste. Journal of Architectural Sciences and Applications, 8(1), 38–53. https://doi.org/10.30785/mbud.1244395

Aydemir, A. Z., & Jacoby, S. (2022). Architectural design research: Drivers of practice. The Design Journal, 25(4), 657–674. https://doi.org/10.1080/14606925.2022.2081303

Bergsagel, D., & Heisel, F. (2023). Structural design using reclaimed wood – A case study and proposed design procedure. Journal of Cleaner Production, 420, 138316. https://doi.org/10.1016/j.jclepro.2023.138316

Browne, X., Popovic Larsen, O., & Castriotto, C. (2021). Utilising waste wood through reciprocal frame systems. In A. Behnejad, G. Parke, & O. Samavati (Eds.), Proceedings of the IASS Annual Symposium 2020/21 and the 7th International Conference on Spatial Structures. University of Surrey.

Browne, X., Popovic Larsen, O., Friis, N. C., & Kühn, M. S. (2022). Material Value(s): Motivating the architectural application of waste wood. Architecture, Structures and Construction, 2(4), 575–584. https://doi.org/10.1007/s44150-022-00065-6

Brütting, J., Senatore, G., & Fivet, C. (2019). Form Follows Availability – Designing Structures Through Reuse. Journal of the International Association for Shell and Spatial Structures, 60(4), 257–265. https://doi.org/10.20898/j.iass.2019.202.033

Bruun, E., Besler, E., Adriaenssens, S., & Parascho, S. (2022). ZeroWaste: Towards Computing Cooperative Robotic Sequences for the  Disassembly and Reuse of Timber Frame Structures. In M. Akbarzadeh, D. Aviv, H. Jamelle, & S.-S. Robert (Eds.), Proceedings of the 42nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) (pp. 586–597). Association for Computer Aided Design in Architecture (ACADIA).

Bukauskas, A., Mayencourt, P., Shepherd, P., Sharma, B., Mueller, C., Walker, P., & Bregulla, J. (2019). Whole timber construction: A state of the art review. Construction and Building Materials, 213, 748–769. https://doi.org/10.1016/j.conbuildmat.2019.03.043

Byers, B., & De Wolf, C. (2023). QR Code-Based Material Passports for Component Reuse Across Life Cycle Stages in Small-Scale Construction. Circular Economy, 1(2), 1–16. https://doi.org/10.55845/IWEB6031

Byers, B. S., Cheriyamulla, S., Ewason, J., Hall, D. M., & De Wolf, C. (2022, July 24). Using engraved QR codes to connect building components to materials passports for circular construction. 2022 European Conference on Computing in Construction. https://doi.org/10.35490/EC3.2022.226

Castriotto, C., Tavares, F., Celani, G., Popovic Larsen, O., & Browne, X. (2022). Clamp links: A novel type of reciprocal frame connection. International Journal of Architectural Computing, 20(2), 378–399. https://doi.org/10.1177/14780771211054169

Çetin, S., De Wolf, C., & Bocken, N. (2021). Circular Digital Built Environment: An Emerging Framework. Sustainability, 13(11), 6348. https://doi.org/10.3390/su13116348

Chai, H., & Yuan, P. F. (2019). Investigations on Potentials of Robotic Band-Saw Cutting in Complex Wood Structures. In J. Willmann, P. Block, M. Hutter, K. Byrne, & T. Schork (Eds.), Robotic Fabrication in Architecture, Art and Design 2018 (pp. 256–269). Springer International Publishing. https://doi.org/10.1007/978-3-319-92294-2_20

Churkina, G., Organschi, A., Reyer, C. P. O., Ruff, A., Vinke, K., Liu, Z., Reck, B. K., Graedel, T. E., & Schellnhuber, H. J. (2020). Buildings as a global carbon sink. Nature Sustainability, 3(4), 269–276. https://doi.org/10.1038/s41893-019-0462-4

Cousin, T. (2022). Shingle Nest: Fabricating Self-Supporting Shingle Envelopes Using Upcycled Elements. In M. Akbarzadeh, D. Aviv, H. Jamelle, & S.-S. Robert (Eds.), Proceedings of the 42nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) (pp. 130–135). Association for Computer Aided Design in Architecture (ACADIA).

Cousin, T., Alkhayat, L., Pearl, N., Dewart, C. B., & Mueller, C. (2023). Wild Wood Gridshells: Mixed-Reality Construction of Nonstandard Wood. Technology|Architecture + Design, 7(2), 216–231. https://doi.org/10.1080/24751448.2023.2245725

Dubor, A., Krenmüller, R., & Chadha, K. (2019). Back to Order: Trash, entropy and the role of robotic fabrication in the circular economy. In A. Markoupoulou, C. Farinea, & M. Marengo (Eds.), Responsive Cities: Disrupting through Circular Design. Institute for Advanced Architecture of Catalonia.

European Committee for Standardization (CEN). (2012). Timber structures – Structural timber and glued laminated timber – Determination of some physical and mechanical properties (European Standard EN 408:2010+A1:2012).

European Committee for Standardization (CEN). (2016). Structural timber – Strength classes (European Standard EN 338:2016).

Finch, G., & Marriage, G. (2019). Eliminating Building and Construction Waste with Computer-Aided Manufacturing and Prefabrication. In I. Mutis & T. Hartmann (Eds.), Advances in Informatics and Computing in Civil and Construction Engineering (pp. 805–814). Springer International Publishing. https://doi.org/10.1007/978-3-030-00220-6_97

Grüter, C., Gordon, M., Muster, M., Kastner, F., Grönquist, P., Frangi, A., Langenberg, S., & De Wolf, C. (2023). Design for and from disassembly with timber elements: Strategies based on two case studies from Switzerland. Frontiers in Built Environment, 9, 1307632. https://doi.org/10.3389/fbuil.2023.1307632

Höglmeier, K., Weber‐Blaschke, G., & Richter, K. (2015). Evaluation of Wood Cascading. In J. Dewulf, S. De Meester, & R. A. F. Alvarenga (Eds.), Sustainability Assessment of Renewables‐Based Products (1st ed., pp. 335–346). Wiley. https://doi.org/10.1002/9781118933916.ch22

Huang, Y., Alkhayat, L., De Wolf, C., & Mueller, C. (2021). Algorithmic circular design with reused structural elements: Method and tool. In C. Fivet, P. D’Acunto, M. Fernàndez Ruiz, & P. O. Ohlbrock (Eds.), Proceedings of the International fib Symposium on the Conceptual Design of Structures (pp. 457–468). fedération internationale du béton (fib). https://doi.org/10.35789/fib.PROC.0055.2021.CDSymp.P056

Hudert, M., & Mangliár, L. (2023). A reconfigurable construction system based on hypar timber components. In Y. M. Xie, J. Burry, T.-U. Lee, & J. Ma (Eds.), Proceedings of the IASS Annual Symposium 2023: Integration of Design and Fabrication. https://www.researchgate.net/publication/372186237_A_reconfigurable_construction_system_based_on_hypar_timber_components

Johns, R. L., & Foley, N. (2014). Bandsawn Bands: Feature-Based Design and Fabrication of Nested Freeform Surfaces in Wood. In W. McGee & M. Ponce De Leon (Eds.), Robotic Fabrication in Architecture, Art and Design 2014 (pp. 17–32). Springer International Publishing. https://doi.org/10.1007/978-3-319-04663-1_2

Kerezov, A. D., Koshihara, M., & Tachi, T. (2022). From Natural Tree Forks to Grid Shells: Towards a Self-forming Geometry. In L.-Y. Cheng (Ed.), ICGG 2022—Proceedings of the 20th International Conference on Geometry and Graphics (Vol. 146, pp. 418–430). Springer International Publishing. https://doi.org/10.1007/978-3-031-13588-0_36

Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling, 127, 221–232. https://doi.org/10.1016/j.resconrec.2017.09.005

Kunic, A., Kramberger, A., & Naboni, R. (2021). Cyber-Physical Robotic Process for Re-Configurable Wood Architecture—Closing the circular loop in wood architecture. Proceedings of the 39th Conference on Education and Research in Computer Aided Architectural Design in Europe, 2, 181–188. https://doi.org/10.52842/conf.ecaade.2021.2.181

Kunic, A., Naboni, R., Kramberger, A., & Schlette, C. (2021). Design and assembly automation of the Robotic Reversible Timber Beam. Automation in Construction, 123, 103531. https://doi.org/10.1016/j.autcon.2020.103531

Larsen, N. M., & Aagaard, A. K. (2020). Robotic processing of crooked sawlogs for use in architectural construction. Construction Robotics, 4(1–2), 75–83. https://doi.org/10.1007/s41693-020-00028-7

Larsen, N. M., Aagaard, A. K., Hudert, M., & Rahbek, L. W. (2022). Timber structures made of naturally curved oak wood: Prototypes and processes. Architecture, Structures and Construction, 2(4), 493–507. https://doi.org/10.1007/s44150-022-00046-9

Lendager, A., & Pedersen, E. (2020). Solution: Circular buildings. Danish Architectural Press.

Lok, L., & Bae, J. (2022). Timber De-Standardized 2.0: Mixed Reality Visualizations and User Interface for Processing Irregular Timber. Proceedings of the 27th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), 121–130. https://doi.org/10.52842/conf.caadria.2022.2.121

Lok, L., Samaniego, A., & Spenser, L. (2021). Timber De-Standardized: A Mixed Reality Framework for the Assembly of Irregular Tree Log Structures. In K. Dörfler, S. Parascho, J. Scott, B. Bogosian, B. Farahi, J. L. García del Castillo y López, J. A. Grant, & V. Noel (Eds.), Proceedings of the 41th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) (pp. 222–231). Association of Computer Aided Design in Architecture (ACADIA).

Luczkowski, M., Haakonsen, S. M., Tomczak, A., & Izumi, B. (2023). PROPOSAL OF INTERACTIVE WORKFLOW FOR CIRCULAR TIMBER STRUCTURE DESIGN. World Conference on Timber Engineering (WCTE 2023), 3644–3648. https://doi.org/10.52202/069179-0474

Mair, C., & Stern, T. (2017). Cascading Utilization of Wood: A Matter of Circular Economy? Current Forestry Reports, 3(4), 281–295. https://doi.org/10.1007/s40725-017-0067-y

Mangliár, L., & Hudert, M. (2022a). Enabling circularity in building construction: Experiments with robotically assembled interlocking structures. In P. Cruz & M. F. Hvejsel (Eds.), Structures and Architecture: A Viable Urban Perspective? (1st ed., pp. 585–592). CRC Press. https://doi.org/10.1201/9781003023555-70

Mangliár, L., & Hudert, M. (2022b). Re:Shuffle. ICSA2022: Critical Practices, 50–51.

Müller, C. (2000). Holzleimbau: Laminated Timber Construction. Birkhäuser.

Naboni, R., Kunic, A., Kramberger, A., & Schlette, C. (2021). Design, simulation and robotic assembly of reversible timber structures. Construction Robotics, 5(1), 13–22. https://doi.org/10.1007/s41693-020-00052-7

Poteschkin, V., Graf, J., Krötsch, S., & Shi, W. (2019). Recycling of Cross-Laminated Timber Production Waste. In C. Leopold, C. Robeller, & U. Weber (Eds.), Research Culture in  Architecture (pp. 101–112). Birkhäuser. https://doi.org/10.1515/9783035620238-010

Reisach, D. (2023a). Offcut Tales: Documenting the Aesthetics of Timber Waste. In A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, & M. Swackhamer (Eds.), Proceedings of the 43rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA): Vol. Volume I: Projects (pp. 154–159). Association for Computer Aided Design in Architecture (ACADIA). https://doi.org/10.3929/ethz-b-000643632

Reisach, D. (2023b). Spruce Beetle (v1.0.1) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.10985644

Reisach, D., Schütz, S., Willmann, J., & Schneider, S. (2023). A Design-to-Fabrication Workflow for Free-Form Timber Structures Using Offcuts. In M. Turrin, C. Andriotis, & A. Rafiee (Eds.), Computer-Aided Architectural Design. INTERCONNECTIONS: Co-computing Beyond Boundaries. CAAD Futures 2023 (Vol. 1819, pp. 361–375). Springer. https://doi.org/10.1007/978-3-031-37189-9_24

Robeller, C., & Von Haaren, N. (2020). Recycleshell: Wood-only Shell Structures Made From Cross-Laminated Timber (CLT) Production Waste. Journal of the International Association for Shell and Spatial Structures, 61(2), 125–139. https://doi.org/10.20898/j.iass.2020.204.045

Self, M., & Vercruysse, E. (2017). Infinite Variations, Radical Strategies. In A. Menges, B. Sheil, R. Glynn, & M. Skavara (Eds.), Fabricate 2017 (pp. 30–35). UCL Press. https://doi.org/10.2307/j.ctt1n7qkg7.8

Skene, K. R. (2018). Circles, spirals, pyramids and cubes: Why the circular economy cannot work. Sustainability Science, 13(2), 479–492. https://doi.org/10.1007/s11625-017-0443-3

Stehling, H., & Scheurer, F. (2017). Waved Wooden Wall. In R. Glynn & B. Sheil (Eds.), Fabricate 2011 (pp. 227–230). UCL Press. https://www.jstor.org/stable/j.ctt1tp3c6d.41

Stehling, H., Scheurer, F., & Roulier, J. (2017). Bridging the Gap from Cad to Cam: Concepts, Caveats and a New Grasshopper Plug-In. In F. Gramazio, M. Kohler, & S. Langenberg (Eds.), Fabricate 2014 (pp. 52–59). UCL Press. https://doi.org/10.2307/j.ctt1tp3c5w.10

Stehling, H., Scheurer, F., Roulier, J., Geglo, H., & Hofmann, M. (2017). From Lamination to Assembly: Modelling the Seine Musicale. In A. Menges, B. Sheil, R. Glynn, & M. Skavara (Eds.), Fabricate 2017 (pp. 258–263). UCL Press. https://doi.org/10.2307/j.ctt1n7qkg7.39

Stehling, H., Scheurer, F., & Usai, S. (2020). Large-Scale Free-Form Timber Grid Shell: Digital Planning of the New Swatch Headquarters in Biel, Switzerland. In J. Burry, J. Sabin, B. Sheil, & M. Skavara (Eds.), Fabricate 2020 (pp. 210–217). UCL Press. https://doi.org/10.2307/j.ctv13xpsvw.32

Sunshine, G. (2022). Inventory: CAD for Medium Resolution Materials. In M. Akbarzadeh, D. Aviv, H. Jamelle, & S.-S. Robert (Eds.), Proceedings of the 42nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) (pp. 196–207). Association for Computer Aided Design in Architecture (ACADIA).

Svilans, T., Tamke, M., Thomsen, M. R., Runberger, J., Strehlke, K., & Antemann, M. (2019). New Workflows for Digital Timber. In F. Bianconi & M. Filippucci (Eds.), Digital Wood Design (Vol. 24, pp. 93–134). Springer International Publishing. https://doi.org/10.1007/978-3-030-03676-8_3

Takabayashi, H., Kado, K., & Hirasawa, G. (2019). Versatile Robotic Wood Processing Based on Analysis of Parts Processing of Japanese Traditional Wooden Buildings. In J. Willmann, P. Block, M. Hutter, K. Byrne, & T. Schork (Eds.), Robotic Fabrication in Architecture, Art and Design 2018 (pp. 221–231). Springer International Publishing. https://doi.org/10.1007/978-3-319-92294-2_17

Tutsch, J. (2020). Weitgespannte Lamellendächer der Frühen Moderne. Konstruktionsgeschichte, Geometrie und Tragverhalten [PhD Thesis]. TU Munich.

Van Buren, N., Demmers, M., Van Der Heijden, R., & Witlox, F. (2016). Towards a Circular Economy: The Role of Dutch Logistics Industries and Governments. Sustainability, 8(7). https://doi.org/10.3390/su8070647

Vercruysse, E., Mollica, Z., & Devadass, P. (2019). Altered Behaviour: The Performative Nature of Manufacture Chainsaw Choreographies + Bandsaw Manoeuvres. In J. Willmann, P. Block, M. Hutter, K. Byrne, & T. Schork (Eds.), Robotic Fabrication in Architecture, Art and Design 2018 (pp. 309–319). Springer International Publishing. https://doi.org/10.1007/978-3-319-92294-2_24

Vestartas, P., Rezaei Rad, A., & Weinand, Y. (2021). Robotically-fabricated nexorades from whole timber. In C. Fivet, P. D’Acunto, M. Fernàndez Ruiz, & P. O. Ohlbrock (Eds.), Proceedings of the International fib Symposium on the Conceptual Design of Structures (pp. 539–546). fedération internationale du béton (fib). https://doi.org/10.35789/fib.PROC.0055.2021.CDSymp.P067

Warde, P., & Carlowitz, H. C. V. (2017). Sylvicultura oeconomica. In L. Robin & S. Sörlin (Eds.), The Future of Nature (pp. 67–77). Yale University Press. https://doi.org/10.12987/9780300188479-009

Warmuth, J., Brütting, J., & Fivet, C. (2021). Computational Tool for Stock-Constrained Design of Structures. In A. Behnejad, G. Parke, & O. Samavati (Eds.), Proceedings of the IASS Annual Symposium 2020/21 and the 7th International Conference on Spatial Structures. University of Surrey.

Willmann, J., Knauss, M., Bonwetsch, T., Apolinarska, A. A., Gramazio, F., & Kohler, M. (2016). Robotic timber construction—Expanding additive fabrication to new dimensions. Automation in Construction, 61, 16–23. https://doi.org/10.1016/j.autcon.2015.09.011

Wójcik, M., & Strumiłło, J. (2014). Behaviour-based Wood Connection as a Base for New Tectonics. In M. Keitsch (Ed.), Proceedings of the 20th Annual International Sustainable Development Research Conference (pp. 170–184). Norwegian University of Science and Technology. https://doi.org/10.21427/D71R50

Yuan, P. F., & Chai, H. (2017). Robotic Wood Tectonics. In A. Menges, B. Sheil, R. Glynn, & M. Skavara (Eds.), Fabricate 2017 (pp. 44–49). UCL Press. https://doi.org/10.2307/j.ctt1n7qkg7.10

Yuan, P. F., Chai, H., Yan, C., & Zhou, J. J. (2016). Robotic Fabrication of Structural Performance-based Timber Gridshell in Large-Scale Building Scenario. In K. Velikov, S. Ahlquist, M. del Campo, & G. Thün (Eds.), Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) (pp. 196–205). Association for Computer Aided Design in Architecture (ACADIA). https://doi.org/10.52842/conf.acadia.2016.196

X

DSRPT is an education technology start-up in stealth mode.
Circular Economy is our first venture. We are on a mission to disrupt higher education. If you wish to learn more about us, drop us a message: dsrpt@circular-economy.org