Repurposing Electric Vehicle Lithium-ion Batteries for the Household Context: A Delphi Study
DOI:
https://doi.org/10.55845/TEFD6721Keywords:
Repurposing Lithium-Ion Batteries, Sustainable Business Models, Value Chains, User Perspectives, Household ContextAbstract
The shift towards circular economy is accelerating, driven by policies incentivising circularity, and industry adapting sustainable business models. In Europe, the European Green Deal is a catalyst, including the new battery regulation adopted in 2023, which sets requirements for reuse, repurposing, and recycling of electric vehicle (EV) Lithium-ion Batteries (LiBs). These steps are particularly relevant because of the widespread adoption of EVs which is expected to increase the number of First End-of-Life (FEoL) LiBs in the near future. Repurposing these batteries, for example in energy storage systems (ESS), can extend their useful life before being recycled. This study explores the likelihood and feasibility of repurposing FEoL EV LiBs in the household context across short-, mid-, and long-term perspectives. It uses the Delphi method to gather expert opinions on key aspects such as the share of repurposed batteries in the future, value chain structures, emerging sustainable business models, drivers and barriers, and customer willingness to adopt repurposed batteries. The findings suggest that while technical feasibility is promising in the short-term, opinions about economic feasibility are polarised. Factors such as declining prices of new LiBs and alternative battery chemistries may challenge the adoption of repurposed EV LiBs for the household context.
References
Ahmed, S., Verhulst, E., & Boks, C. (2025). Second Life of Electric Vehicle Lithium-Ion Batteries from a Sustainable Business Model Perspective. In S. Fukushige, T. Nonaka, H. Kobayashi, C. Tokoro, & E. Yamasue (Eds.), EcoDesign for Circular Value Creation: Volume I (pp. 229–243). Springer Nature. https://doi.org/10.1007/978-981-97-9068-5_15
Albertsen, L., Richter, J. L., Peck, P., Dalhammar, C., & Plepys, A. (2021). Circular business models for electric vehicle lithium-ion batteries: An analysis of current practices of vehicle manufacturers and policies in the EU. Resources, Conservation and Recycling, 172, 105658. https://doi.org/10.1016/j.resconrec.2021.105658
Assunção, A., Moura, P. S., & de Almeida, A. T. (2016). Technical and economic assessment of the secondary use of repurposed electric vehicle batteries in the residential sector to support solar energy. Applied Energy, 181, 120–131. https://doi.org/10.1016/j.apenergy.2016.08.056
Berger, K., Schöggl, J.-P., & Baumgartner, R. J. (2022). Digital battery passports to enable circular and sustainable value chains: Conceptualization and use cases. Journal of Cleaner Production, 353, 131492. https://doi.org/10.1016/j.jclepro.2022.131492
Billanes, J., & Enevoldsen, P. (2022). Influential factors to residential building Occupants’ acceptance and adoption of smart energy technologies in Denmark. Energy and Buildings, 276, 112524. https://doi.org/10.1016/j.enbuild.2022.112524
BloombergNEF. (2023, November 27). What the Home Battery Market Needs to Scale. BloombergNEF. https://about.bnef.com/blog/what-the-home-battery-market-needs-to-scale/
Bocken, N., Boons, F., & Baldassarre, B. (2019). Sustainable business model experimentation by understanding ecologies of business models. Journal of Cleaner Production, 208C, 1498–1512. https://doi.org/10.1016/j.jclepro.2018.10.159
Bonsu, N. O. (2020). Towards a circular and low-carbon economy: Insights from the transitioning to electric vehicles and net zero economy. Journal of Cleaner Production, 256, 120659. https://doi.org/10.1016/j.jclepro.2020.120659
Boons, F., & Lüdeke-Freund, F. (2013). Business models for sustainable innovation: State-of-the-art and steps towards a research agenda. Journal of Cleaner Production, 45, 9–19. https://doi.org/10.1016/j.jclepro.2012.07.007
Börner, M. F., Frieges, M. H., Späth, B., Spütz, K., Heimes, H. H., Sauer, D. U., & Li, W. (2022). Challenges of second-life concepts for retired electric vehicle batteries. Cell Reports Physical Science, 3(10), Article 10. https://doi.org/10.1016/j.xcrp.2022.101095
Bräuer, S. (2016). They not only live once–towards product-service systems for repurposed electric vehicle batteries. Proceedings of the Multikonferenz Wirtschaftsinformatik (MKWI 2016). Ilmenau, Germany, 1299–1310.
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa
Büchel, H., & Spinler, S. (2024). The impact of the metaverse on e-commerce business models – A delphi-based scenario study. Technology in Society, 76, 102465. https://doi.org/10.1016/j.techsoc.2024.102465
BVES. (2024, March 14). BVES Sector Analysis 2024. BVES. https://www.bves.de/en/publikation/bves-sector-analysis-2024/
Casals, L. C., Amante García, B., & Canal, C. (2019). Second life batteries lifespan: Rest of useful life and environmental analysis. Journal of Environmental Management, 232, 354–363. https://doi.org/10.1016/j.jenvman.2018.11.046
Catton, J., Walker, S. B., McInnis, P., Fowler, M., Fraser, R., Young, S. B., & Gaffney, B. (2017). Comparative safety risk and the use of repurposed EV batteries for stationary energy storage. 2017 5th IEEE International Conference on Smart Energy Grid Engineering, SEGE 2017, 200–209. https://doi.org/10.1109/SEGE.2017.8052799
Christensen, P. A., Mrozik, W., & Wise, M. S. (2023). A study on the safety of second life batteries in battery energy storage systems. Https://Eprints.Ncl.Ac.Uk. https://eprints.ncl.ac.uk
Colarullo, L., & Thakur, J. (2022). Second-life EV batteries for stationary storage applications in Local Energy Communities. Renewable and Sustainable Energy Reviews, 169, 112913. https://doi.org/10.1016/j.rser.2022.112913
Colthorpe, A. (2021, March 23). More than 300,000 battery storage systems installed in German households. Energy-Storage.News. https://www.energy-storage.news/more-than-300000-battery-storage-systems-installed-in-german-households/
Critical Raw Materials Act—Internal Market, Industry, Entrepreneurship and SMEs. (2024). https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials/critical-raw-materials-act_en
Dalkey, N., & Helmer, O. (1963). An Experimental Application of the DELPHI Method to the Use of Experts. Management Science, 9(3), 458–467. https://doi.org/10.1287/mnsc.9.3.458
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
Erikson, T., Løvdal, N. S., & Aspelund, A. (2015). Entrepreneurial Judgment and Value Capture, the Case of the Nascent Offshore Renewable Industry. Sustainability, 7(11), 14859–14872. https://doi.org/10.3390/su71114859
EU Parliament. (2023). Regulation (EU) 2023/ of the European Parliament and of the Council of 12 July 2023 concerning batteries and waste batteries, amending Directive 2008/98/EC and Regulation (EU) 2019/1020 and repealing Directive 2006/66/EC.
European Commission. (2019). The European Green Deal (No. COM/2019/640/ Final). Publications office of the European Union. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640
European Standards. (2024). BS IEC 63338:2024 General guidance on reuse and repurposing of secondary cells and batteries. Https://Www.En-Standard.Eu. https://www.en-standard.eu/bs-iec-63338-2024-general-guidance-on-reuse-and-repurposing-of-secondary-cells-and-batteries/
Evyon. (2022, April 29). Evyon and Mercedes-Benz Energy sign 26MWh sourcing agreement and MoU to enable maximum value generation from second-life EV batteries. Eyvon. https://www.evyon.com/news/2022/04/evyon-and-mercedes-benz-energy-sign-26mwh-sourcing-agreement-and-mou-to-enable-maximum-value-generation-from-second-life-ev-batteries/
Farmer, A., & Watkins, E. (2023). Managing waste batteries from electric vehicles.
Figgener, J., Hecht, C., Bors, J., Spreuer, K., Kairies, K.-P., Stenzel, P., & Sauer, D. U. (2023). The development of battery storage systems in Germany: A market review (status 2023). https://doi.org/10.48550/arXiv.2203.06762
Große-Kreul, F. (2022). What will drive household adoption of smart energy? Insights from a consumer acceptance study in Germany. Utilities Policy, 75, 101333. https://doi.org/10.1016/j.jup.2021.101333
Gu, X., Bai, H., Cui, X., Zhu, J., Zhuang, W., Li, Z., Hu, X., & Song, Z. (2024). Challenges and opportunities for second-life batteries: Key technologies and economy. Renewable and Sustainable Energy Reviews, 192, 114191. https://doi.org/10.1016/j.rser.2023.114191
Guan, Y., Yan, J., Shan, Y., Zhou, Y., Hang, Y., Li, R., Liu, Y., Liu, B., Nie, Q., Bruckner, B., Feng, K., & Hubacek, K. (2023). Burden of the global energy price crisis on households. Nature Energy, 8(3), 304–316. https://doi.org/10.1038/s41560-023-01209-8
Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., Walton, A., Christensen, P., Heidrich, O., Lambert, S., Abbott, A., Ryder, K., Gaines, L., & Anderson, P. (2019). Recycling lithium-ion batteries from electric vehicles. Nature, 575(7781), Article 7781. https://doi.org/10.1038/s41586-019-1682-5
Hasselqvist, H., Renström, S., Håkansson, M., & Strömberg, H. (2022). Exploring Renewable Energy Futures through Household Energy Resilience. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, 1–18. https://doi.org/10.1145/3491102.3517597
Hellmuth, J. F., DiFilippo, N. M., & Jouaneh, M. K. (2021). Assessment of the automation potential of electric vehicle battery disassembly. Journal of Manufacturing Systems, 59, 398–412. https://doi.org/10.1016/j.jmsy.2021.03.009
Hellström, M., & Wrålsen, B. (2024). Towards a circular business ecosystem of used electric vehicle batteries – A modelling approach. Sustainable Futures, 8, 100325. https://doi.org/10.1016/j.sftr.2024.100325
Heymans, C., Walker, S. B., Young, S. B., & Fowler, M. (2014). Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling. Energy Policy, 71, 22–30. https://doi.org/10.1016/j.enpol.2014.04.016
Hossain, E., Murtaugh, D., Mody, J., Faruque, H. M. R., Haque Sunny, Md. S., & Mohammad, N. (2019). A Comprehensive Review on Second-Life Batteries: Current State, Manufacturing Considerations, Applications, Impacts, Barriers & Potential Solutions, Business Strategies, and Policies. IEEE Access, 7, 73215–73252. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2917859
Hsu, C.-C., & Sandford, B. A. (2007). The Delphi Technique: Making Sense of Consensus. Practical Assessment, Research, and Evaluation, 12(1), Article 1. https://doi.org/10.7275/pdz9-th90
Hu, X., Deng, X., Wang, F., Deng, Z., Lin, X., Teodorescu, R., & Pecht, M. G. (2022). A Review of Second-Life Lithium-Ion Batteries for Stationary Energy Storage Applications. Proceedings of the IEEE, 110(6), Article 6. Proceedings of the IEEE. https://doi.org/10.1109/JPROC.2022.3175614
Huether, P. (2025, July 8). Repurposing EV Batteries for Second-Life Stationary Storage: Market Landscape and Key Challenges | ACEEE. https://www.aceee.org/policy-brief/2025/07/repurposing-ev-batteries-second-life-stationary-storage-market-landscape-and
Hunt, G. (1996). Electric Vehicle Battery Test Procedures Manua. https://avt.inl.gov/sites/default/files/pdf/battery/usabc_manual_rev2.pdf
IEA. (2024). Global EV Outlook 2024 – Analysis. IEA. https://www.iea.org/reports/global-ev-outlook-2024
IEA. (2025, May 14). Global EV Outlook 2025 – Analysis. IEA. https://www.iea.org/reports/global-ev-outlook-2025
Ioakimidis, C. S., Murillo-Marrodán, A., Bagheri, A., Thomas, D., & Genikomsakis, K. N. (2019). Life Cycle Assessment of a Lithium Iron Phosphate (LFP) Electric Vehicle Battery in Second Life Application Scenarios. Sustainability, 11(9), 2527. https://doi.org/10.3390/su11092527
Jian, L., Zechun, H., Banister, D., Yongqiang, Z., & Zhongying, W. (2018). The future of energy storage shaped by electric vehicles: A perspective from China. Energy, 154, 249–257. https://doi.org/10.1016/j.energy.2018.04.124
Kamath, D., Moore, S., Arsenault, R., & Anctil, A. (2023). A system dynamics model for end-of-life management of electric vehicle batteries in the US: Comparing the cost, carbon, and material requirements of remanufacturing and recycling. Resources, Conservation and Recycling, 196. https://doi.org/10.1016/j.resconrec.2023.107061
Kanda, W., Geissdoerfer, M., & Hjelm, O. (2021). From circular business models to circular business ecosystems. Business Strategy and the Environment, 30(6), 2814–2829. https://doi.org/10.1002/bse.2895
Kastanaki, E., & Giannis, A. (2023). Dynamic estimation of end-of-life electric vehicle batteries in the EU-27 considering reuse, remanufacturing and recycling options. Journal of Cleaner Production, 393, 136349. https://doi.org/10.1016/j.jclepro.2023.136349
Khatibi, F. S., Dedekorkut-Howes, A., Howes, M., & Torabi, E. (2021). Can public awareness, knowledge and engagement improve climate change adaptation policies? Discover Sustainability, 2(1), 18. https://doi.org/10.1007/s43621-021-00024-z
Kian Chong, W., Shafaghi, M., Woollaston, C., & Lui, V. (2010). B2B e‐marketplace: An e‐marketing framework for B2B commerce. Marketing Intelligence & Planning, 28(3), 310–329. https://doi.org/10.1108/02634501011041444
Kohs, A., & Brachtendorf, R. (2023). Cell-to-pack—Potentials of Compact Battery Design along the Lifecycle. ATZ Worldwide, 125(11), 40–43. https://doi.org/10.1007/s38311-023-1554-3
Kulkov, I., Chirumalla, K., Stefan, I., Dahlquist, E., & Johansson, G. (2025). Business models for second life batteries: A comprehensive framework for selecting sustainable business options. Journal of Engineering and Technology Management, 76, 101874. https://doi.org/10.1016/j.jengtecman.2025.101874
Lombardi, D. R., Kim, M., Sipior, J. C., & Vasarhelyi, M. A. (2025). The increased role of advanced technology and automation in audit: A delphi study. International Journal of Accounting Information Systems, 56, 100733. https://doi.org/10.1016/j.accinf.2025.100733
Ma, S., Seidl, D., & McNulty, T. (2021). Challenges and practices of interviewing business elites. Strategic Organization, 19(1), 81–96. https://doi.org/10.1177/1476127020980969
Manthey, N. (2023). This is yet the smallest second-life for Nissan Leaf batteries | electrive.com. https://www.electrive.com/2023/09/07/this-is-yet-the-smallest-second-life-for-nissan-leaf-batteries/
Mårtensson, F., & Renmarker, R. (2024). Investigating Possible Applications and Business Models of Second-Life Batteries from Electric Scooters. Lund University.
Martinez-Laserna, E., Gandiaga, I., Sarasketa-Zabala, E., Badeda, J., Stroe, D.-I., Swierczynski, M., & Goikoetxea, A. (2018). Battery second life: Hype, hope or reality? A critical review of the state of the art. Renewable and Sustainable Energy Reviews, 93, 701–718. https://doi.org/10.1016/j.rser.2018.04.035
Martinez-Laserna, E., Sarasketa-Zabala, E., Villarreal Sarria, I., Stroe, D.-I., Swierczynski, M., Warnecke, A., Timmermans, J.-M., Goutam, S., Omar, N., & Rodriguez, P. (2018). Technical Viability of Battery Second Life: A Study From the Ageing Perspective. IEEE Transactions on Industry Applications, 54(3), 2703–2713. IEEE Transactions on Industry Applications. https://doi.org/10.1109/TIA.2018.2801262
Melin, H. (2017). Circular opportunities in the lithium-ion industry. Creation Inn: London, UK.
Meng, K., Xu, G., Peng, X., Youcef-Toumi, K., & Li, J. (2022). Intelligent disassembly of electric-vehicle batteries: A forward-looking overview. Resources, Conservation and Recycling, 182, 106207. https://doi.org/10.1016/j.resconrec.2022.106207
Michelini, E., Höschele, P., Ratz, F., Stadlbauer, M., Rom, W., Ellersdorfer, C., & Moser, J. (2023). Potential and Most Promising Second-Life Applications for Automotive Lithium-Ion Batteries Considering Technical, Economic and Legal Aspects. Energies, 16(6), 2830. https://doi.org/10.3390/en16062830
Ministry of Transport Norway. (2025, January 15). Norway is electric [Redaksjonellartikkel]. Government.No; regjeringen.no. https://www.regjeringen.no/en/topics/transport-and-communications/veg/faktaartikler-vei-og-ts/norway-is-electric/id2677481/
Murtaza, M. B., Gupta, V., & Carroll, R. C. (2004). E‐marketplaces and the future of supply chain management: Opportunities and challenges. Business Process Management Journal, 10(3), 325–335. https://doi.org/10.1108/14637150410539722
Niederberger, M., & Spranger, J. (2020). Delphi Technique in Health Sciences: A Map. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.00457
Nurdiawati, A., & Agrawal, T. K. (2022). Creating a circular EV battery value chain: End-of-life strategies and future perspective. Resources, Conservation and Recycling, 185, 106484. https://doi.org/10.1016/j.resconrec.2022.106484
Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: An example, design considerations and applications. Information & Management, 42(1), 15–29. https://doi.org/10.1016/j.im.2003.11.002
Pagliaro, M., & Meneguzzo, F. (2019). Lithium battery reusing and recycling: A circular economy insight. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01866
Palm, J., & Tengvard, M. (2011). Motives for and barriers to household adoption of small-scale production of electricity: Examples from Sweden. Sustainability: Science, Practice and Policy, 7(1), 6–15. https://doi.org/10.1080/15487733.2011.11908061
Pampel, F., Pischinger, S., & Teuber, M. (2022). A systematic comparison of the packing density of battery cell-to-pack concepts at different degrees of implementation. Results in Engineering, 13, 100310. https://doi.org/10.1016/j.rineng.2021.100310
Pantelatos, L., Boks, C., & Verhulst, E. (2023). A Review of Repurposing Lithium-ion Batteries for Household Applications. PROCEEDINGS 5th PLATE Conference.
Pantelatos, L., Boks, C., & Verhulst, E. (2025). Repurposing Lithium-Ion Batteries for the Household Context: An Industry Investigation in Norway. In S. Fukushige, T. Nonaka, H. Kobayashi, C. Tokoro, & E. Yamasue (Eds.), EcoDesign for Circular Value Creation: Volume II (pp. 133–147). Springer Nature. https://doi.org/10.1007/978-981-97-9076-0_9
Paoli, L., & Bennett, S. (2019, October 10). Is government support for EVs contributing to a low-emissions future? – Analysis. IEA. https://www.iea.org/commentaries/is-government-support-for-evs-contributing-to-a-low-emissions-future
Patel, A. N., Lander, L., Ahuja, J., Bulman, J., Lum, J. K. H., Pople, J. O. D., Hales, A., Patel, Y., & Edge, J. S. (2024). Lithium-ion battery second life: Pathways, challenges and outlook. Frontiers in Chemistry, 12. https://doi.org/10.3389/fchem.2024.1358417
Philippot, M., Costa, D., Hosen, M. S., Senécat, A., Brouwers, E., Nanini-Maury, E., Van Mierlo, J., & Messagie, M. (2022). Environmental impact of the second life of an automotive battery: Reuse and repurpose based on ageing tests. Journal of Cleaner Production, 366, 132872. https://doi.org/10.1016/j.jclepro.2022.132872
Prenner, S., Part, F., Jung-Waclik, S., Bordes, A., Leonhardt, R., Jandric, A., Schmidt, A., & Huber-Humer, M. (2024). Barriers and framework conditions for the market entry of second-life lithium-ion batteries from electric vehicles. Heliyon, 10(18), e37423. https://doi.org/10.1016/j.heliyon.2024.e37423
Reinhardt, R., Christodoulou, I., García, B. A., & Gassó-Domingo, S. (2020). Sustainable business model archetypes for the electric vehicle battery second use industry: Towards a conceptual framework. Journal of Cleaner Production, 254, 119994. https://doi.org/10.1016/j.jclepro.2020.119994
Reinhardt, R., Christodoulou, I., Gassó-Domingo, S., & Amante García, B. (2019a). Towards sustainable business models for electric vehicle battery second use: A critical review. Journal of Environmental Management, 245, 432–446. Scopus. https://doi.org/10.1016/j.jenvman.2019.05.095
Reinhardt, R., Christodoulou, I., Gassó-Domingo, S., & Amante García, B. (2019b). Towards sustainable business models for electric vehicle battery second use: A critical review. Journal of Environmental Management, 245, 432–446. https://doi.org/10.1016/j.jenvman.2019.05.095
Rogers, E. M. (1983). Diffusion of innovations (3. ed). Free Press [u.a.].
Rönkkö, P., Majava, J., Hyvärinen, T., Oksanen, I., Tervonen, P., & Lassi, U. (2024). The circular economy of electric vehicle batteries: A Finnish case study. Environment Systems and Decisions, 44(1), 100–113. https://doi.org/10.1007/s10669-023-09916-z
Samsung SDI. (2025). [SDI Focus] ‘Cell-to-Pack (CtP)’ Technology Skips Modules For Packs. https://news.samsungsdi.com/global/articleView?seq=250
Saxena, S., Le Floch, C., MacDonald, J., & Moura, S. (2015). Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models. Journal of Power Sources, 282, 265–276.
Sindha, J., Thakur, J., & Khalid, M. (2023). The economic value of hybrid battery swapping stations with second life of batteries. Cleaner Energy Systems, 5, 100066. https://doi.org/10.1016/j.cles.2023.100066
Spindlegger, A., Slotyuk, L., Jandric, A., De Souza, R. G., Prenner, S., & Part, F. (2025). Environmental performance of second-life lithium-ion batteries repurposed from electric vehicles for household storage systems. Sustainable Production and Consumption, 54, 227–240. https://doi.org/10.1016/j.spc.2025.01.003
Stefan, I., & Chirumalla, K. (2025). Enabling value retention in circular ecosystems for the second life of electric vehicle batteries. Resources, Conservation and Recycling, 212, 107942. https://doi.org/10.1016/j.resconrec.2024.107942
Sun, S. I., Chipperfield, A. J., Kiaee, M., & Wills, R. G. (2018). Effects of market dynamics on the time-evolving price of second-life electric vehicle batteries. Journal of Energy Storage, 19, 41–51.
Thakur, J., Martins Leite de Almeida, C., & Baskar, A. G. (2022). Electric vehicle batteries for a circular economy: Second life batteries as residential stationary storage. Journal of Cleaner Production, 375, 134066. https://doi.org/10.1016/j.jclepro.2022.134066
Toorajipour, R., Chirumalla, K., Johansson, G., Dahlquist, E., & Wallin, F. (2024). Implementing circular business models for the second-life battery of electric vehicles: Challenges and enablers from an ecosystem perspective. Business Strategy and the Environment, n/a(n/a). https://doi.org/10.1002/bse.3941
UL Standards & Engagement. (2023, November 22). Updated Standard Contributes to EV Battery Circularity—UL Standards & Engagement. https://ulse.org/insight/ul-standards-engagement-un-sustainable-development-goals-2030-updated-standard-contributes-ev/
Wrålsen, B., Prieto-Sandoval, V., Mejia-Villa, A., O’Born, R., Hellström, M., & Faessler, B. (2021). Circular business models for lithium-ion batteries—Stakeholders, barriers, and drivers. Journal of Cleaner Production, 317, 128393. https://doi.org/10.1016/j.jclepro.2021.128393
Zhu, J., Mathews, I., Ren, D., Li, W., Cogswell, D., Xing, B., Sedlatschek, T., Kantareddy, S. N. R., Yi, M., Gao, T., Xia, Y., Zhou, Q., Wierzbicki, T., & Bazant, M. Z. (2021). End-of-life or second-life options for retired electric vehicle batteries. Cell Reports Physical Science, 2(8), 100537. https://doi.org/10.1016/j.xcrp.2021.100537
Downloads
Additional Files
Published
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon request.
Issue
Section
Categories
License
Copyright (c) 2025 Leander Pantelatos, Saad Ahmed, Dr. Casper Boks, Dr. Elli Verhulst (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.