Repurposing Electric Vehicle Lithium-ion Batteries for the Household Context: A Delphi Study

Authors

DOI:

https://doi.org/10.55845/TEFD6721

Keywords:

Repurposing Lithium-Ion Batteries, Sustainable Business Models, Value Chains, User Perspectives, Household Context

Abstract

The shift towards circular economy is accelerating, driven by policies incentivising circularity, and industry adapting sustainable business models. In Europe, the European Green Deal is a catalyst, including the new battery regulation adopted in 2023, which sets requirements for reuse, repurposing, and recycling of electric vehicle (EV) Lithium-ion Batteries (LiBs). These steps are particularly relevant because of the widespread adoption of EVs which is expected to increase the number of First End-of-Life (FEoL) LiBs in the near future. Repurposing these batteries, for example in energy storage systems (ESS), can extend their useful life before being recycled. This study explores the likelihood and feasibility of repurposing FEoL EV LiBs in the household context across short-, mid-, and long-term perspectives. It uses the Delphi method to gather expert opinions on key aspects such as the share of repurposed batteries in the future, value chain structures, emerging sustainable business models, drivers and barriers, and customer willingness to adopt repurposed batteries. The findings suggest that while technical feasibility is promising in the short-term, opinions about economic feasibility are polarised. Factors such as declining prices of new LiBs and alternative battery chemistries may challenge the adoption of repurposed EV LiBs for the household context.

 

 

References

Ahmed, S., Verhulst, E., & Boks, C. (2025). Second Life of Electric Vehicle Lithium-Ion Batteries from a Sustainable Business Model Perspective. In S. Fukushige, T. Nonaka, H. Kobayashi, C. Tokoro, & E. Yamasue (Eds.), EcoDesign for Circular Value Creation: Volume I (pp. 229–243). Springer Nature. https://doi.org/10.1007/978-981-97-9068-5_15

Albertsen, L., Richter, J. L., Peck, P., Dalhammar, C., & Plepys, A. (2021). Circular business models for electric vehicle lithium-ion batteries: An analysis of current practices of vehicle manufacturers and policies in the EU. Resources, Conservation and Recycling, 172, 105658. https://doi.org/10.1016/j.resconrec.2021.105658

Assunção, A., Moura, P. S., & de Almeida, A. T. (2016). Technical and economic assessment of the secondary use of repurposed electric vehicle batteries in the residential sector to support solar energy. Applied Energy, 181, 120–131. https://doi.org/10.1016/j.apenergy.2016.08.056

Berger, K., Schöggl, J.-P., & Baumgartner, R. J. (2022). Digital battery passports to enable circular and sustainable value chains: Conceptualization and use cases. Journal of Cleaner Production, 353, 131492. https://doi.org/10.1016/j.jclepro.2022.131492

Billanes, J., & Enevoldsen, P. (2022). Influential factors to residential building Occupants’ acceptance and adoption of smart energy technologies in Denmark. Energy and Buildings, 276, 112524. https://doi.org/10.1016/j.enbuild.2022.112524

BloombergNEF. (2023, November 27). What the Home Battery Market Needs to Scale. BloombergNEF. https://about.bnef.com/blog/what-the-home-battery-market-needs-to-scale/

Bocken, N., Boons, F., & Baldassarre, B. (2019). Sustainable business model experimentation by understanding ecologies of business models. Journal of Cleaner Production, 208C, 1498–1512. https://doi.org/10.1016/j.jclepro.2018.10.159

Bonsu, N. O. (2020). Towards a circular and low-carbon economy: Insights from the transitioning to electric vehicles and net zero economy. Journal of Cleaner Production, 256, 120659. https://doi.org/10.1016/j.jclepro.2020.120659

Boons, F., & Lüdeke-Freund, F. (2013). Business models for sustainable innovation: State-of-the-art and steps towards a research agenda. Journal of Cleaner Production, 45, 9–19. https://doi.org/10.1016/j.jclepro.2012.07.007

Börner, M. F., Frieges, M. H., Späth, B., Spütz, K., Heimes, H. H., Sauer, D. U., & Li, W. (2022). Challenges of second-life concepts for retired electric vehicle batteries. Cell Reports Physical Science, 3(10), Article 10. https://doi.org/10.1016/j.xcrp.2022.101095

Bräuer, S. (2016). They not only live once–towards product-service systems for repurposed electric vehicle batteries. Proceedings of the Multikonferenz Wirtschaftsinformatik (MKWI 2016). Ilmenau, Germany, 1299–1310.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa

Büchel, H., & Spinler, S. (2024). The impact of the metaverse on e-commerce business models – A delphi-based scenario study. Technology in Society, 76, 102465. https://doi.org/10.1016/j.techsoc.2024.102465

BVES. (2024, March 14). BVES Sector Analysis 2024. BVES. https://www.bves.de/en/publikation/bves-sector-analysis-2024/

Casals, L. C., Amante García, B., & Canal, C. (2019). Second life batteries lifespan: Rest of useful life and environmental analysis. Journal of Environmental Management, 232, 354–363. https://doi.org/10.1016/j.jenvman.2018.11.046

Catton, J., Walker, S. B., McInnis, P., Fowler, M., Fraser, R., Young, S. B., & Gaffney, B. (2017). Comparative safety risk and the use of repurposed EV batteries for stationary energy storage. 2017 5th IEEE International Conference on Smart Energy Grid Engineering, SEGE 2017, 200–209. https://doi.org/10.1109/SEGE.2017.8052799

Christensen, P. A., Mrozik, W., & Wise, M. S. (2023). A study on the safety of second life batteries in battery energy storage systems. Https://Eprints.Ncl.Ac.Uk. https://eprints.ncl.ac.uk

Colarullo, L., & Thakur, J. (2022). Second-life EV batteries for stationary storage applications in Local Energy Communities. Renewable and Sustainable Energy Reviews, 169, 112913. https://doi.org/10.1016/j.rser.2022.112913

Colthorpe, A. (2021, March 23). More than 300,000 battery storage systems installed in German households. Energy-Storage.News. https://www.energy-storage.news/more-than-300000-battery-storage-systems-installed-in-german-households/

Critical Raw Materials Act—Internal Market, Industry, Entrepreneurship and SMEs. (2024). https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials/critical-raw-materials-act_en

Dalkey, N., & Helmer, O. (1963). An Experimental Application of the DELPHI Method to the Use of Experts. Management Science, 9(3), 458–467. https://doi.org/10.1287/mnsc.9.3.458

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008

Erikson, T., Løvdal, N. S., & Aspelund, A. (2015). Entrepreneurial Judgment and Value Capture, the Case of the Nascent Offshore Renewable Industry. Sustainability, 7(11), 14859–14872. https://doi.org/10.3390/su71114859

EU Parliament. (2023). Regulation (EU) 2023/ of the European Parliament and of the Council of 12 July 2023 concerning batteries and waste batteries, amending Directive 2008/98/EC and Regulation (EU) 2019/1020 and repealing Directive 2006/66/EC.

European Commission. (2019). The European Green Deal (No. COM/2019/640/ Final). Publications office of the European Union. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640

European Standards. (2024). BS IEC 63338:2024 General guidance on reuse and repurposing of secondary cells and batteries. Https://Www.En-Standard.Eu. https://www.en-standard.eu/bs-iec-63338-2024-general-guidance-on-reuse-and-repurposing-of-secondary-cells-and-batteries/

Evyon. (2022, April 29). Evyon and Mercedes-Benz Energy sign 26MWh sourcing agreement and MoU to enable maximum value generation from second-life EV batteries. Eyvon. https://www.evyon.com/news/2022/04/evyon-and-mercedes-benz-energy-sign-26mwh-sourcing-agreement-and-mou-to-enable-maximum-value-generation-from-second-life-ev-batteries/

Farmer, A., & Watkins, E. (2023). Managing waste batteries from electric vehicles.

Figgener, J., Hecht, C., Bors, J., Spreuer, K., Kairies, K.-P., Stenzel, P., & Sauer, D. U. (2023). The development of battery storage systems in Germany: A market review (status 2023). https://doi.org/10.48550/arXiv.2203.06762

Große-Kreul, F. (2022). What will drive household adoption of smart energy? Insights from a consumer acceptance study in Germany. Utilities Policy, 75, 101333. https://doi.org/10.1016/j.jup.2021.101333

Gu, X., Bai, H., Cui, X., Zhu, J., Zhuang, W., Li, Z., Hu, X., & Song, Z. (2024). Challenges and opportunities for second-life batteries: Key technologies and economy. Renewable and Sustainable Energy Reviews, 192, 114191. https://doi.org/10.1016/j.rser.2023.114191

Guan, Y., Yan, J., Shan, Y., Zhou, Y., Hang, Y., Li, R., Liu, Y., Liu, B., Nie, Q., Bruckner, B., Feng, K., & Hubacek, K. (2023). Burden of the global energy price crisis on households. Nature Energy, 8(3), 304–316. https://doi.org/10.1038/s41560-023-01209-8

Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., Walton, A., Christensen, P., Heidrich, O., Lambert, S., Abbott, A., Ryder, K., Gaines, L., & Anderson, P. (2019). Recycling lithium-ion batteries from electric vehicles. Nature, 575(7781), Article 7781. https://doi.org/10.1038/s41586-019-1682-5

Hasselqvist, H., Renström, S., Håkansson, M., & Strömberg, H. (2022). Exploring Renewable Energy Futures through Household Energy Resilience. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, 1–18. https://doi.org/10.1145/3491102.3517597

Hellmuth, J. F., DiFilippo, N. M., & Jouaneh, M. K. (2021). Assessment of the automation potential of electric vehicle battery disassembly. Journal of Manufacturing Systems, 59, 398–412. https://doi.org/10.1016/j.jmsy.2021.03.009

Hellström, M., & Wrålsen, B. (2024). Towards a circular business ecosystem of used electric vehicle batteries – A modelling approach. Sustainable Futures, 8, 100325. https://doi.org/10.1016/j.sftr.2024.100325

Heymans, C., Walker, S. B., Young, S. B., & Fowler, M. (2014). Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling. Energy Policy, 71, 22–30. https://doi.org/10.1016/j.enpol.2014.04.016

Hossain, E., Murtaugh, D., Mody, J., Faruque, H. M. R., Haque Sunny, Md. S., & Mohammad, N. (2019). A Comprehensive Review on Second-Life Batteries: Current State, Manufacturing Considerations, Applications, Impacts, Barriers & Potential Solutions, Business Strategies, and Policies. IEEE Access, 7, 73215–73252. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2917859

Hsu, C.-C., & Sandford, B. A. (2007). The Delphi Technique: Making Sense of Consensus. Practical Assessment, Research, and Evaluation, 12(1), Article 1. https://doi.org/10.7275/pdz9-th90

Hu, X., Deng, X., Wang, F., Deng, Z., Lin, X., Teodorescu, R., & Pecht, M. G. (2022). A Review of Second-Life Lithium-Ion Batteries for Stationary Energy Storage Applications. Proceedings of the IEEE, 110(6), Article 6. Proceedings of the IEEE. https://doi.org/10.1109/JPROC.2022.3175614

Huether, P. (2025, July 8). Repurposing EV Batteries for Second-Life Stationary Storage: Market Landscape and Key Challenges | ACEEE. https://www.aceee.org/policy-brief/2025/07/repurposing-ev-batteries-second-life-stationary-storage-market-landscape-and

Hunt, G. (1996). Electric Vehicle Battery Test Procedures Manua. https://avt.inl.gov/sites/default/files/pdf/battery/usabc_manual_rev2.pdf

IEA. (2024). Global EV Outlook 2024 – Analysis. IEA. https://www.iea.org/reports/global-ev-outlook-2024

IEA. (2025, May 14). Global EV Outlook 2025 – Analysis. IEA. https://www.iea.org/reports/global-ev-outlook-2025

Ioakimidis, C. S., Murillo-Marrodán, A., Bagheri, A., Thomas, D., & Genikomsakis, K. N. (2019). Life Cycle Assessment of a Lithium Iron Phosphate (LFP) Electric Vehicle Battery in Second Life Application Scenarios. Sustainability, 11(9), 2527. https://doi.org/10.3390/su11092527

Jian, L., Zechun, H., Banister, D., Yongqiang, Z., & Zhongying, W. (2018). The future of energy storage shaped by electric vehicles: A perspective from China. Energy, 154, 249–257. https://doi.org/10.1016/j.energy.2018.04.124

Kamath, D., Moore, S., Arsenault, R., & Anctil, A. (2023). A system dynamics model for end-of-life management of electric vehicle batteries in the US: Comparing the cost, carbon, and material requirements of remanufacturing and recycling. Resources, Conservation and Recycling, 196. https://doi.org/10.1016/j.resconrec.2023.107061

Kanda, W., Geissdoerfer, M., & Hjelm, O. (2021). From circular business models to circular business ecosystems. Business Strategy and the Environment, 30(6), 2814–2829. https://doi.org/10.1002/bse.2895

Kastanaki, E., & Giannis, A. (2023). Dynamic estimation of end-of-life electric vehicle batteries in the EU-27 considering reuse, remanufacturing and recycling options. Journal of Cleaner Production, 393, 136349. https://doi.org/10.1016/j.jclepro.2023.136349

Khatibi, F. S., Dedekorkut-Howes, A., Howes, M., & Torabi, E. (2021). Can public awareness, knowledge and engagement improve climate change adaptation policies? Discover Sustainability, 2(1), 18. https://doi.org/10.1007/s43621-021-00024-z

Kian Chong, W., Shafaghi, M., Woollaston, C., & Lui, V. (2010). B2B e‐marketplace: An e‐marketing framework for B2B commerce. Marketing Intelligence & Planning, 28(3), 310–329. https://doi.org/10.1108/02634501011041444

Kohs, A., & Brachtendorf, R. (2023). Cell-to-pack—Potentials of Compact Battery Design along the Lifecycle. ATZ Worldwide, 125(11), 40–43. https://doi.org/10.1007/s38311-023-1554-3

Kulkov, I., Chirumalla, K., Stefan, I., Dahlquist, E., & Johansson, G. (2025). Business models for second life batteries: A comprehensive framework for selecting sustainable business options. Journal of Engineering and Technology Management, 76, 101874. https://doi.org/10.1016/j.jengtecman.2025.101874

Lombardi, D. R., Kim, M., Sipior, J. C., & Vasarhelyi, M. A. (2025). The increased role of advanced technology and automation in audit: A delphi study. International Journal of Accounting Information Systems, 56, 100733. https://doi.org/10.1016/j.accinf.2025.100733

Ma, S., Seidl, D., & McNulty, T. (2021). Challenges and practices of interviewing business elites. Strategic Organization, 19(1), 81–96. https://doi.org/10.1177/1476127020980969

Manthey, N. (2023). This is yet the smallest second-life for Nissan Leaf batteries | electrive.com. https://www.electrive.com/2023/09/07/this-is-yet-the-smallest-second-life-for-nissan-leaf-batteries/

Mårtensson, F., & Renmarker, R. (2024). Investigating Possible Applications and Business Models of Second-Life Batteries from Electric Scooters. Lund University.

Martinez-Laserna, E., Gandiaga, I., Sarasketa-Zabala, E., Badeda, J., Stroe, D.-I., Swierczynski, M., & Goikoetxea, A. (2018). Battery second life: Hype, hope or reality? A critical review of the state of the art. Renewable and Sustainable Energy Reviews, 93, 701–718. https://doi.org/10.1016/j.rser.2018.04.035

Martinez-Laserna, E., Sarasketa-Zabala, E., Villarreal Sarria, I., Stroe, D.-I., Swierczynski, M., Warnecke, A., Timmermans, J.-M., Goutam, S., Omar, N., & Rodriguez, P. (2018). Technical Viability of Battery Second Life: A Study From the Ageing Perspective. IEEE Transactions on Industry Applications, 54(3), 2703–2713. IEEE Transactions on Industry Applications. https://doi.org/10.1109/TIA.2018.2801262

Melin, H. (2017). Circular opportunities in the lithium-ion industry. Creation Inn: London, UK.

Meng, K., Xu, G., Peng, X., Youcef-Toumi, K., & Li, J. (2022). Intelligent disassembly of electric-vehicle batteries: A forward-looking overview. Resources, Conservation and Recycling, 182, 106207. https://doi.org/10.1016/j.resconrec.2022.106207

Michelini, E., Höschele, P., Ratz, F., Stadlbauer, M., Rom, W., Ellersdorfer, C., & Moser, J. (2023). Potential and Most Promising Second-Life Applications for Automotive Lithium-Ion Batteries Considering Technical, Economic and Legal Aspects. Energies, 16(6), 2830. https://doi.org/10.3390/en16062830

Ministry of Transport Norway. (2025, January 15). Norway is electric [Redaksjonellartikkel]. Government.No; regjeringen.no. https://www.regjeringen.no/en/topics/transport-and-communications/veg/faktaartikler-vei-og-ts/norway-is-electric/id2677481/

Murtaza, M. B., Gupta, V., & Carroll, R. C. (2004). E‐marketplaces and the future of supply chain management: Opportunities and challenges. Business Process Management Journal, 10(3), 325–335. https://doi.org/10.1108/14637150410539722

Niederberger, M., & Spranger, J. (2020). Delphi Technique in Health Sciences: A Map. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.00457

Nurdiawati, A., & Agrawal, T. K. (2022). Creating a circular EV battery value chain: End-of-life strategies and future perspective. Resources, Conservation and Recycling, 185, 106484. https://doi.org/10.1016/j.resconrec.2022.106484

Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: An example, design considerations and applications. Information & Management, 42(1), 15–29. https://doi.org/10.1016/j.im.2003.11.002

Pagliaro, M., & Meneguzzo, F. (2019). Lithium battery reusing and recycling: A circular economy insight. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01866

Palm, J., & Tengvard, M. (2011). Motives for and barriers to household adoption of small-scale production of electricity: Examples from Sweden. Sustainability: Science, Practice and Policy, 7(1), 6–15. https://doi.org/10.1080/15487733.2011.11908061

Pampel, F., Pischinger, S., & Teuber, M. (2022). A systematic comparison of the packing density of battery cell-to-pack concepts at different degrees of implementation. Results in Engineering, 13, 100310. https://doi.org/10.1016/j.rineng.2021.100310

Pantelatos, L., Boks, C., & Verhulst, E. (2023). A Review of Repurposing Lithium-ion Batteries for Household Applications. PROCEEDINGS 5th PLATE Conference.

Pantelatos, L., Boks, C., & Verhulst, E. (2025). Repurposing Lithium-Ion Batteries for the Household Context: An Industry Investigation in Norway. In S. Fukushige, T. Nonaka, H. Kobayashi, C. Tokoro, & E. Yamasue (Eds.), EcoDesign for Circular Value Creation: Volume II (pp. 133–147). Springer Nature. https://doi.org/10.1007/978-981-97-9076-0_9

Paoli, L., & Bennett, S. (2019, October 10). Is government support for EVs contributing to a low-emissions future? – Analysis. IEA. https://www.iea.org/commentaries/is-government-support-for-evs-contributing-to-a-low-emissions-future

Patel, A. N., Lander, L., Ahuja, J., Bulman, J., Lum, J. K. H., Pople, J. O. D., Hales, A., Patel, Y., & Edge, J. S. (2024). Lithium-ion battery second life: Pathways, challenges and outlook. Frontiers in Chemistry, 12. https://doi.org/10.3389/fchem.2024.1358417

Philippot, M., Costa, D., Hosen, M. S., Senécat, A., Brouwers, E., Nanini-Maury, E., Van Mierlo, J., & Messagie, M. (2022). Environmental impact of the second life of an automotive battery: Reuse and repurpose based on ageing tests. Journal of Cleaner Production, 366, 132872. https://doi.org/10.1016/j.jclepro.2022.132872

Prenner, S., Part, F., Jung-Waclik, S., Bordes, A., Leonhardt, R., Jandric, A., Schmidt, A., & Huber-Humer, M. (2024). Barriers and framework conditions for the market entry of second-life lithium-ion batteries from electric vehicles. Heliyon, 10(18), e37423. https://doi.org/10.1016/j.heliyon.2024.e37423

Reinhardt, R., Christodoulou, I., García, B. A., & Gassó-Domingo, S. (2020). Sustainable business model archetypes for the electric vehicle battery second use industry: Towards a conceptual framework. Journal of Cleaner Production, 254, 119994. https://doi.org/10.1016/j.jclepro.2020.119994

Reinhardt, R., Christodoulou, I., Gassó-Domingo, S., & Amante García, B. (2019a). Towards sustainable business models for electric vehicle battery second use: A critical review. Journal of Environmental Management, 245, 432–446. Scopus. https://doi.org/10.1016/j.jenvman.2019.05.095

Reinhardt, R., Christodoulou, I., Gassó-Domingo, S., & Amante García, B. (2019b). Towards sustainable business models for electric vehicle battery second use: A critical review. Journal of Environmental Management, 245, 432–446. https://doi.org/10.1016/j.jenvman.2019.05.095

Rogers, E. M. (1983). Diffusion of innovations (3. ed). Free Press [u.a.].

Rönkkö, P., Majava, J., Hyvärinen, T., Oksanen, I., Tervonen, P., & Lassi, U. (2024). The circular economy of electric vehicle batteries: A Finnish case study. Environment Systems and Decisions, 44(1), 100–113. https://doi.org/10.1007/s10669-023-09916-z

Samsung SDI. (2025). [SDI Focus] ‘Cell-to-Pack (CtP)’ Technology Skips Modules For Packs. https://news.samsungsdi.com/global/articleView?seq=250

Saxena, S., Le Floch, C., MacDonald, J., & Moura, S. (2015). Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models. Journal of Power Sources, 282, 265–276.

Sindha, J., Thakur, J., & Khalid, M. (2023). The economic value of hybrid battery swapping stations with second life of batteries. Cleaner Energy Systems, 5, 100066. https://doi.org/10.1016/j.cles.2023.100066

Spindlegger, A., Slotyuk, L., Jandric, A., De Souza, R. G., Prenner, S., & Part, F. (2025). Environmental performance of second-life lithium-ion batteries repurposed from electric vehicles for household storage systems. Sustainable Production and Consumption, 54, 227–240. https://doi.org/10.1016/j.spc.2025.01.003

Stefan, I., & Chirumalla, K. (2025). Enabling value retention in circular ecosystems for the second life of electric vehicle batteries. Resources, Conservation and Recycling, 212, 107942. https://doi.org/10.1016/j.resconrec.2024.107942

Sun, S. I., Chipperfield, A. J., Kiaee, M., & Wills, R. G. (2018). Effects of market dynamics on the time-evolving price of second-life electric vehicle batteries. Journal of Energy Storage, 19, 41–51.

Thakur, J., Martins Leite de Almeida, C., & Baskar, A. G. (2022). Electric vehicle batteries for a circular economy: Second life batteries as residential stationary storage. Journal of Cleaner Production, 375, 134066. https://doi.org/10.1016/j.jclepro.2022.134066

Toorajipour, R., Chirumalla, K., Johansson, G., Dahlquist, E., & Wallin, F. (2024). Implementing circular business models for the second-life battery of electric vehicles: Challenges and enablers from an ecosystem perspective. Business Strategy and the Environment, n/a(n/a). https://doi.org/10.1002/bse.3941

UL Standards & Engagement. (2023, November 22). Updated Standard Contributes to EV Battery Circularity—UL Standards & Engagement. https://ulse.org/insight/ul-standards-engagement-un-sustainable-development-goals-2030-updated-standard-contributes-ev/

Wrålsen, B., Prieto-Sandoval, V., Mejia-Villa, A., O’Born, R., Hellström, M., & Faessler, B. (2021). Circular business models for lithium-ion batteries—Stakeholders, barriers, and drivers. Journal of Cleaner Production, 317, 128393. https://doi.org/10.1016/j.jclepro.2021.128393

Zhu, J., Mathews, I., Ren, D., Li, W., Cogswell, D., Xing, B., Sedlatschek, T., Kantareddy, S. N. R., Yi, M., Gao, T., Xia, Y., Zhou, Q., Wierzbicki, T., & Bazant, M. Z. (2021). End-of-life or second-life options for retired electric vehicle batteries. Cell Reports Physical Science, 2(8), 100537. https://doi.org/10.1016/j.xcrp.2021.100537

Downloads

Additional Files

Published

13-01-2025

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon request.

Issue

Section

Research Articles

Categories

How to Cite

Pantelatos, L., Ahmed, S., Boks, C., & Verhulst, E. (2025). Repurposing Electric Vehicle Lithium-ion Batteries for the Household Context: A Delphi Study. Journal of Circular Economy, 4(1). https://doi.org/10.55845/TEFD6721