Exploration of solar energy as a means for sustainable management of non-renewable natural resources for present and future generations

Authors

  • Adekunle Mofolasayo Carnelian-Ruby Inc. Author

DOI:

https://doi.org/10.55845/ZYFB4412

Keywords:

Solar Energy, Resource Depletion, Non-renewable Resources, Sustainability, Renewable Energy

Abstract

Solar energy has the potential to help alleviate fears about depleting fossil fuel energy reserves, but it is not widely accepted. The concern about sustainability and resource depletion for non-renewable resources makes the evaluation of the acceptance rate of renewable energy resources an important endeavour to ensure adequate planning for energy sustainability for present and future generations. Using the amount of electricity generated from solar energy by selected provinces in Canada, this study evaluates the rate of acceptance of solar power as an alternative energy source. The study’s results showed that there is considerable room for improvement in efforts to utilize solar power as a means of sustainably managing ‘non-renewable’ energy resources for present and future generations. This study recommends continuous improvement in the exploration of solar energy systems as an alternative source of energy to address concerns about the depletion of non-renewable fuels.

References

Abdallah, R., Juaidi, A., Abdel-Fattah, S., & Manzano-Agugliaro, F. (2020). Estimating the Optimum Tilt Angles for South-Facing Surfaces in Palestine. Energies, 13 (3), 623. https://doi.org/10.3390/en13030623

Abed, F., & Al-Salami, Q. H. (2021). Calculate the best slope angle of photovoltaic panels theoretically in all cities in Turkey. International Journal of Environmental Science and Technology 19, 9639–9654. https://doi.org/10.1007/s13762-021-03797-y

Agrawal, S. & Soni, R. (2021). Renewable Energy. Sources, Importance and Prospects for Sustainable Future. In Energy: Crises, Challenges and Solutions. John Wiley & Sons Ltd. https://doi.org/10.1002/9781119741503.ch7

Alami, A. H., Olabi, A. G., Mdallal, A., Rezk, A., Radwan, A., Rahman, S. M. A., Shah, S. K., & Abdelkareem, M.A. (2023). Concentrating solar power (CSP) technologies: Status and analysis. International Journal of Thermofluids. 18. https://doi.org/10.1016/j.ijft.2023.100340.

Amin, M., Shah, H. H., Fareed, A. G., Khan, W. U., Chung, E., Zia, A., Farooq, Z. U. R., & Lee, C. (2022). Hydrogen production through renewable and non-renewable energy processes and their impact on climate change. International Journal of Hydrogen Energy 47 (77), https://doi.org/10.1016/j.ijhydene.2022.07.172.

Aliakbari,R., SafdariPor, A., Kawsari, E., & Gheibi, M. (2025). Energy justice within low-carbon circular economy; geostatistical analysis; policymaking; and economical nexuses. Journal of Cleaner Production. 495. https://doi.org/10.1016/j.jclepro.2025.144940

Aparicio, A.J.P., Carrasco, V. M. S., Montero-Martin, J., Sanchez-Lorenzo, A., Costa, M.J., & Anton, M. (2018). Analysis of sunshine duration and cloud cover trends in Lisbon for the period 1890–2018. Atmospheric Research, 290, 106804. https://doi.org/10.1016/j.atmosres.2023.106804

Atthasongkhro, J., Lim, A., Ueranantasun, A., Tongkumchum, P., & Khurram, H. (2024). A statistical model of solar radiation absorption in the United States. Terrestrial, Atmospheric and Oceanic Sciences 35, 11. https://doi.org/10.1007/s44195-024-00069-3

Awad, H. (2018). Integrating Solar PV Systems into Residential Buildings in Cold-climate Regions: The Impact of Energy-efficient Homes on Shaping the Future Smart Grid. Thesis. University of Alberta.

Awad, H., Gul, M., & Al-Hussein, M. (2021). Long-term performance and GHG emission offset analysis of small-scale grid-tied residential solar PV systems in northerly latitudes, Advances in Building Energy Research, 15 (6), 733-754, https://doi.org/10.1080/17512549.2020.1720812

Azni, M.A.; Md Khalid, R.; Hasran, U.A.; Kamarudin, S.K. (2023). Review of the Effects of Fossil Fuels and the Need for a Hydrogen Fuel Cell Policy in Malaysia. Sustainability 15, 4033. https://doi.org/10.3390/su15054033.

Badza, K., Sawadogo, M., & Soro, Y.M. (2024). Evaluation of Energy Payback Time (EPBT) and Carbon Emission by a Medium-Sized PV Power Plant in Burkina Faso. In: Chen, L. (eds) Advances in Clean Energy Systems and Technologies. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-49787-2_4

Baldwin, J. D. (2019). What causes solar panel performance to decline. Available online at https://www.solarunitedneighbors.org/news/what-causes-solar-panel-performance-to-decline/. Accessed June 12, 2023.

Berg, N. (2018). What will happen to solar panels after their useful lives are over? Available online at https://www.greenbiz.com/article/what-will-happen-solar-panels-after-their-useful-lives-are-over Accessed August 8, 2023.

Canada’s Renewable Power – Alberta. (2022). Available online at https://www.cer-rec.gc.ca/en/data-analysis/energy-commodities/electricity/report/canadas-renewable-power/provinces/renewable-power-canada-alberta.html Accessed July 31, 2023.

Canada’ Renewable Power – British Columbia. (2022). Available online at https://www.cer-rec.gc.ca/en/data-analysis/energy-commodities/electricity/report/canadas-renewable-power/provinces/renewable-power-canada-british-columbia.html Accessed August 2, 2023.

Canada’s Renewable Power – Manitoba. (2022). Available online at https://www.cer-rec.gc.ca/en/data-analysis/energy-commodities/electricity/report/canadas-renewable-power/provinces/renewable-power-canada-manitoba.html Accessed August 2, 2023.

Canada’s Renewable Power – New Brunswick. (2022). Available online at https://www.cer-rec.gc.ca/en/data-analysis/energy-commodities/electricity/report/canadas-renewable-power/provinces/renewable-power-canada-new-brunswick.html Accessed August 2, 2023.

Canada’s Renewable Power – Northwest Territories. (2022). Available online at https://www.cer-rec.gc.ca/en/data-analysis/energy-commodities/electricity/report/canadas-renewable-power/provinces/renewable-power-canada-northwest-territories.html Accessed June 13, 2025.

Canada’s Renewable Power – Nova Scotia. (2022). Available online at https://www.cer-rec.gc.ca/en/data-analysis/energy-commodities/electricity/report/canadas-renewable-power/provinces/renewable-power-canada-nova-scotia.html. Accessed June 13, 2025.

Canada’s Renewable Power. Ontario. (2022). Available online at https://www.cer-rec.gc.ca/en/data-analysis/energy-commodities/electricity/report/canadas-renewable-power/provinces/renewable-power-canada-ontario.html. Accessed August 2, 2023

Canada’s Renewable Power – Quebec. (2022). Available online at https://www.cer-rec.gc.ca/en/data-analysis/energy-commodities/electricity/report/canadas-renewable-power/provinces/renewable-power-canada-quebec.html Accessed August 2, 2023

Canada’s Renewable Power – Saskatchewan. (2022). Available online at https://www.cer-rec.gc.ca/en/data-analysis/energy-commodities/electricity/report/canadas-renewable-power/provinces/renewable-power-canada-saskatchewan.html Accessed August 2, 2023.

Capellan-Perez, I., Mediavilla, M., de Castro, C., Carpintero, O. & Miguel, L. J. (2014). Fossil fuel depletion and socio-economic scenarios: An integrated approach. Energy, 77. 641-666. https://doi.org/10.1016/j.energy.2014.09.063

Chia, S. R., Nomanbhay, S., Ong, M. Y., Shamsuddin, A. H. B., Chew, K. W. & Show, P. L., (2022). Renewable diesel as fossil fuel substitution in Malaysia: A review, Fuel, 314. https://doi.org/10.1016/j.fuel.2022.123137.

Cristea, C., Cristea, M., Micu, D. D., Ceclan, A., Tirnovan, R-A., & Serban, F. M. (2022). Tridimensional Sustainability and Feasibility Assessment of Grid-Connected Solar Photovoltaic Systems Applied for the Technical University of Cluj-Napoca. Sustainability, 14 (17), 10892. https://doi.org/10.3390/su141710892

CSTA. (2022). Concentrated Solar Power installed capacity grew just over five-fold between 2010 and 2020. Available online at http://en.cnste.org/html/news/2022/0718/1264.html Accessed July 27, 2024.

Energy Rates Canada. Residential Electricity and Natural Gas Plans. Available online at https://energyrates.ca/residential-electricity-natural-gas/ Accessed June 17, 2023.

European Commission. Agrivoltaics alone could surpass EU photovoltaic 2030 goals. The Joint Research Centre: EU Science Hub. (2023). Available online at https://joint-research-centre.ec.europa.eu/jrc-news-and-updates/agrivoltaics-alone-could-surpass-eu-photovoltaic-2030-goals-2023-10-12_en.

Evergreen Electrical Services. Do solar panels lose efficiency over time? Should you replace it at the end? Available online at https://www.evergreenelectrical.com.au/blog/solar-panels-efficiency-over-time Accessed June 12, 2023.

Feldman, D., Wu, K. & Margolis, R. (2021). H1 2021 Solar Industry Update. National Renewable Energy Laboratory NREL/PR-7A40-80427. Available online at https://www.nrel.gov/docs/fy21osti/80427.pdf Accessed July 27, 2024.

Gavin, J. (2022). Assessing the Potential for CO2 EOR and CO2 Storage in Depleted Oil Pools in Southeastern Saskatchewan, Canada. Proceedings of the 16th Greenhouse Gas Control Technologies Conference (GHGT16), http://dx.doi.org/10.2139/ssrn.4298632

Gerbinet, S., Belboom, S., & Leonard, A., (2014). Life Cycle Analysis (LCA) of photovoltaic panels: A review. Renewable and Sustainable Energy Review, 38, 747-753. https://doi.org/10.1016/j.rser.2014.07.043

Guney (2022). Solar energy and sustainable development: evidence from 35 countries. International Journal of Sustainable Development & World Ecology. 29 (2) https://doi.org/10.1080/13504509.2021.1986749

Hanjin, K., Jiyoon, K., Sung-Min, K., & Hyeong-Dong, P. (2022). A new GIS-based algorithm to estimate photovoltaic potential of solar train: Case study in Gyeongbu line, Korea. Renewable Energy. 190, 713-729. https://doi.org/10.1016/j.renene.2022.03.130

Hoel, M., & Kverndokk, S. (1996). Depletion of fossil fuels and the impacts of global warming. Resource and Energy Economics 18 (2), 115-136. https://doi.org/10.1016/0928-7655(96)00005-X

Holechek, J.L., Geli, H.M.E., Sawalhah, M.N. & Valdez, R. (2022). A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 14, 4792. https://doi.org/10.3390/su14084792

Hook, M. & Tang, X., (2013). Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy, 52, 797-809. https://doi.org/10.1016/j.enpol.2012.10.046

Hossain, M. R., SIngh, S., Sharma, G. D., Apostu, S-A., Bansal, P., (2023). Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA. Energy Policy, 174. https://doi.org/10.1016/j.enpol.2023.113469.

Hseih, J. S., (1986). Solar Energy Engineering. Prentice-Hall, Inc., Englewood Cliffs, New Jersey. ISBN 0-13-822446-3.

International Renewable Energy Agency, IRENA. (2023). World Energy Transitions Outlook 2023. 1.5oC Pathway. Available online at https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2023/Jun/IRENA_World_energy_transitions_outlook_2023.pdf?

Kabeyi, M.J.B & Olanrewaju, O. A. (2022). Sustainability Assessment for Non-Combustible Renewable Power Generation. Proceedings of the International Conference on Industrial Engineering and Operations Management Istanbul, Turkey. https://ieomsociety.org/proceedings/2022istanbul/429.pdf

Kannan, R., Leong, K. C., Osman, R., Ho. H. K. & Tso, C. P. (2006). Life cycle assessment study of solar PV systems: An example of a 2.7 kWp distributed solar PV system in Singapore”. Solar Energy. 80, (5), 555-563. https://doi.org/10.1016/j.solener.2005.04.008

Karamov, D. N. & Naumov, I. V. (2020). Modeling a Solar Power Plant with Regard to Changes in Environmental Parameters. Power Technology and Engineering. 54, 548-554. https://doi.org/10.1007/s10749-020-01249-0

Kong, L., Ostadhassan, M., Tamimi, N., Samani, S., Li, C., (2019). Refracturing: well selection, treatment design, and lessons learned—a review. Arabian Journal of Geosciences. 12, 117 https://doi.org/10.1007/s12517-019-4281-8

Lamnatou, C., Guignard, N., Chemisana, D., Cristafari, C., & Debusschere, V. (2023). Photovoltaic power plants with hydraulic storage: Life-cycle assessment focusing on energy payback time and greenhouse-gas emissions – a case study in Spain. Sustainable Energy Technologies and Assessments. 60, 103468. https://doi.org/10.1016/j.seta.2023.103468

Leng, R. A. (2010). The impact of resource depletion is being overshadowed by the threat of global warming. In: Livestock Research for Rural Development, 22 (2). www.lrrd.org/lrrd22/2/leng.htm

Li, M., Zhang, X., Li, G., & Jiang, C. (2016). A feasibility study of microgrids for reducing energy use and GHG emissions in an industrial application. Applied energy, 176. https://doi.org/10.1016/j.apenergy.2016.05.070

Lindsay, G. J., White, D. J., Miller, G. A., Baihly, J. D., Sinosic, B., (2016). Understanding the Applicability and Economic Viability of Refracturing Horizontal Wells in Unconventional Plays. SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, USA. https://doi.org/10.2118/179113-MS

Lujano-Rojas, J. M., Dufo-Lopez, R., & Bernal-Agustin, J. L. B. (2014). Technical and economic effects of charge controller operation and coulombic efficiency on stand-alone hybrid power systems. Energy Conversion and Management. 86, 709-716. https://doi.org/10.1016/j.enconman.2014.06.053

Luo, P., Luo, W. & Li, S., (2017b). Effectiveness of miscible and immiscible gas flooding in recovering tight oil from Bakken reservoirs in Saskatchewan, Canada. Fuel, 208. 626-636. https://doi.org/10.1016/j.fuel.2017.07.044

Luo, W., Khoo, Y. S., Hacke, P., Naumann, V., Lausch, D., Harvey, S. P., Singh, J. P., Chai, J., Wang, Y., Aberle, A. G., & Rarmakrishna, S., (2017a). Potential-induced degradation in photovoltaic modules: a critical review. Energy and Environmental Science. 10, 43-68. https://doi.org/10.1039/C6EE02271E

Mackenzie, D. (2022). An Overview of Heliostats and Concentrating Solar Power Tower Plants. National Renewable Energy Laboratory. Available online at https://www.heliocon.org/resource_download/An_Overview_of_Heliostats_and_Concentrating_Solar_Power_Tower_Plants.pdf. Accessed July 27, 2024.

Mahmud, M.A.P., Huda, N., Farjana, S. H., & Lang, C. (2018). Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment. Energies, 11 (9), 2346; https://doi.org/10.3390/en11092346

Maka, A. O. M., Ghalut, T., & Elsaye, E. (2024). The pathway towards decarbonisation and net-zero emissions by 2050: The role of solar energy technology. Green Technologies and Sustainability. 2 (3). https://doi.org/10.1016/j.grets.2024.100107.

Mendrela, P. Stanek, W., Simla, T. (2024). Thermo-ecological cost – System evaluation of energy-ecological efficiency of hydrogen production from renewable and non-renewable energy resources. International Journal of Hydrogen Energy Part B, 50, 1-14. https://doi.org/10.1016/j.ijhydene.2023.06.150

Miller, G., Lindsay, G., Baihly, J. & Xu, T. (2016). Parent Well Refracturing: Economic Safety Nets in an Uneconomic Market. SPE Low Perm Sympossium, Denver, Colorado. https://doi.org/10.2118/180200-MS

Mofolasayo, A. (2022). A framework for the Application of Optimization Techniques in the Achievement of Global Emission Targets in the Housing Sector. World Journal of Civil Engineering and Architecture. 1 (1) 73-103. https://www.scipublications.com/journal/index.php/wjcea/article/view/512

Mofolasayo A. (2023). Assessing and Managing the Direct and Indirect Emissions from Electric and Fossil-Powered Vehicles. Sustainability. 15(2):1138. https://doi.org/10.3390/su15021138.

Mofolasayo, A. (2024a). Evaluation of economic feasibility of rooftop solar energy systems under multiple variables. Clean Technologies and Recycling. 4 (1), 61-88. https://www.aimspress.com/article/doi/10.3934/ctr.2024004

Mofolasayo., A. (2024b). Evaluating the Potential of Using Solar Energy in Commercial and Residential Buildings. Eliza Press. ISBN-13: 978-9999318617. https://www.elivabooks.com/en/book/book-1917801636

Montero-Martín, J., Anton, M., Vaquero, J. M., Roman, R., Vaquero-Martinez, J., Aparicio, A. J. P., & Sanchez-Lorenzo, A. (2023). Reconstruction of daily global solar radiation under all-sky and cloud-free conditions in Badajoz (Spain) since 1929. International Journal of Climatology, 1–15. https://doi.org/10.1002/joc.8042

Muteri, V., Cellura, M., Curto, D., Franzitta, V., Longo, S., Mistretta, M., & Parisi, M. L. (2019). Review on Life Cycle Assessment of Solar Photovoltaic Panels. Energies 2020, 13 (1), 252. https://doi.org/10.3390/en13010252.

Natural Resources Canada, NRCAN (2020). Photovoltaic potential and solar resource maps of Canada. https://natural-resources.canada.ca/our-natural-resources/energy-sources-distribution/renewable-energy/solar-photovoltaic-energy/tools-solar-photovoltaic-energy/photovoltaic-potential-and-solar-resource-maps-canada/18366 Accessed July 24, 2023.

Notton, G., Diaf, S. & Stuyanov, L. (2011). Hybrid Photovoltaic/Wind Energy Systems for Remote Locations. Energy Procedia, 6, 666-677. https://doi.org/10.1016/j.egypro.2011.05.076

Nyambuu, U. & Semmler, W. (2023). Fossil Fuel Resource Depletion, Backstop Technology, and Renewable Energy. In: Sustainable Macroeconomics, Climate Risks and Energy Transitions. Contributions to Economics. Springer, Cham. https://doi.org/10.1007/978-3-031-27982-9_6.

Opeyemi, B. M. (2021). Path to sustainable energy consumption: The possibility of substituting renewable energy for non-renewable energy. Energy 228. https://doi.org/10.1016/j.energy.2021.120519.

Peng, J., Lu, L., & Yang, H. (2013). Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renewable and sustainable energy reviews 19, 255-274. https://doi.org/10.1016/j.rser.2012.11.035.

Pourasi, H. H., Barenji, R. V. & Khojastehnezhad, V. M. (2023). Solar energy status in the world: A comprehensive review. Energy Reports, 10. https://doi.org/10.1016/j.egyr.2023.10.022.

Ranganath, N. & Sarkar, D. (2021). Life Cycle Costing Analysis of Solar Photo Voltaic Generation System in Indian Scenario. International Journal of Sustainable Engineering. 14 (6). https://doi.org/10.1080/19397038.2021.1986596

Ren, D., Xi, H, Huang, L., Li, Y., Liu, J. & Luo, Z. (2025) Research and application of redevelopment potential evaluation methods for ultra-deep low-porosity fractured gas reservoirs based on data mining. Journal of Petroleum Exploration and Production Technology 15 (41). https://doi.org/10.1007/s13202-025-01928-6.

Rooij, R. V. (2017). Dutch Solar Bike Path Solar Road Successful and Expanding. Available online at https://cleantechnica.com/2017/03/12/dutch-solar-bike-path-solaroad-successful-expanding/. Accessed June 12, 2023.

Sadiq, M., Chavali, K., Kumar, V.V.A., Wang, K-T., Nguyen, P.T. & Ngo, T.Q. (2023). Unveiling the relationship between environmental quality, non-renewable energy usage and natural resource rent: Fresh insights from ten Asian economies. Resources Policy Part A. 85, 103992 https://doi.org/10.1016/j.resourpol.2023.103992.

Sadler, G. W. (1992). Ultraviolet Radiation at Edmonton, Alberta, Canada. Solar Energy, 49 (1). 13-17. https://doi.org/10.1016/0038-092X(92)90121-P

Sanchez-Pantoja, N., Vidal, R., Pastor, M. C. (2018). Aesthetic impact of solar energy systems. Renewable and Sustainable Energy Reviews. 98, 227-238. https://doi.org/10.1016/j.rser.2018.09.021

Santos, S. A. A. D., Torres, J. P. N., Fernandes, C. A. F. & Lameirinhas, R. A. M. (2021). The impact of aging of solar cells on the performance of photovoltaic panels. Energy Conversion and Management: X. https://doi.org/10.1016/j.ecmx.2021.100082.

Shafiee, S. & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37 (1) 181-189. https://doi.org/10.1016/j.enpol.2008.08.016

Souliotis, M., Battisti, R., Corrado, A., (2005). Energy, Cost and LCA Results of PV and Hybrid PV/T Solar Systems. Progress in Photovoltaics: Research and Application.13, 235–250. https://onlinelibrary.wiley.com/doi/pdf/10.1002/pip.590?msockid=2e2eac52bfb9620d310eba13be00639f

Sridhar, C., Thaskeen, F., Harsgita, M., Varsha, J. R., Deepika, T., Pareek, P.K., & Pareek, D. (2022). Green Technology and Sustainable Renewable Energy Analysis. In: Saini, H.S., Sayal, R., Govardhan, A., Buyya, R. (eds) Innovations in Computer Science and Engineering. Lecture Notes in Networks and Systems, 385. Springer, Singapore. https://doi.org/10.1007/978-981-16-8987-1_66.

Surya, B., Salim, A., Saley, H., Abubakar, H., Suriani, S., Sose, A. T. & Kessi, A. M. P. (2021). Economic Growth Model and Renewable Energy Utilization: Perspective of Natural Resources Management and Sustainable Development of the Gowa Regency Region South Sulawesi, Indonesia. International Journal of Energy Economics and Policy, 11(6), 68-90. https://doi.org/10.32479/ijeep.11676.

Tan, L., Ji, X., Li, M., Leng, C., Luo, X., & Li, H. (2014). The experimental study of a two-stage photovoltaic thermal system based on solar trough concentration. Energy Conversion and Management. 86, 410 – 417.

The Canadian Press. Calgary Herald. Alberta announces pause on renewable energy projects, citing rural concerns August 3, 2023. Available online at https://calgaryherald.com/news/alberta-announces-pause-on-renewable-energy-citing-rural-concerns Accessed, August 10, 2023.

Turney, D. & Vasilis, F., 2011. Environmental impacts from the installation and operation of large-scale solar power plants. Renewable and Sustainable Energy Reviews 15, dx.doi.org/10.1016/j.rser.2011.04.023.

Urban, R. (2021). Solar Energy Maps Canada (Every Province). Available online at https://www.energyhub.org/solar-energy-maps-canada/ Accessed August 10, 2023.

Urban, R. (2021b). Solar power Alberta (2021 Guide). Available online at https://www.energyhub.org/alberta/#rebates-tax-breaks Accessed July 29, 2023.

US Department of Energy. What is Community Solar. Available online at https://www.energy.gov/eere/solar/community-solar-basics. Accessed June 13, 2025.

U.S. energy information administration, EIA. How much electricity does an American home use? Available online at https://www.eia.gov/tools/faqs/faq.php?id=97&t=3#:~:text=In%202021%2C%20the%20average%20annual,about%20886%20kWh%20per%20month. Accessed June 17, 2023.

Uyan, M. (2013). GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region, Konya/Turkey. Renewable and Sustainable energy Reviews. 28. https://doi.org/10.1016/j.rser.2013.07.042

Walters. C. C. (2006). The origin of petroleum. Practical Advances in Petroleum Processing. Exxon Mobil Research and Engineering Co. Springer. Available online at https://link.springer.com/content/pdf/10.1007/978-0-387-25789-1_2.pdf Accessed August 2, 2023.

Wu, P., Ma, X., Ji, J., & Ma, Y. (2017). “Review on Life Cycle Assessment of Energy Payback of Solar Photovoltaic Systems and a Case Study”. Energy Procedia, 105, 68-74. https://doi.org/10.1016/j.egypro.2017.03.281

Xu, L., Wang, D., Liu, L., Wang, C., Zhu, H., & Tang, X. (2024). Review of Shale Oil and Gas Refracturing: Techniques and Field Applications. Processes. 12(5), 965; https://doi.org/10.3390/pr12050965.

Xu, L., Zhang, S., Yang, M., Li, & W. & Xu, J. (2018). Environmental effects of China’s solar photovoltaic industry during 2011–2016: A life cycle assessment approach. Journal of Cleaner Production, 170, 310 -329.

Yavari, R., Zaliwciw, D., Cibin, R., & McPhillips, L. (2022). Minimizing environmental impacts of solar farms: a review of current science on landscape hydrology and guidance on stormwater management. Environmental Research: Infrastructure and Sustainability. 2, 032002. https://iopscience.iop.org/article/10.1088/2634-4505/ac76dd

Zhang, B., Zhang, R., Li, Y., Wang, S., & Xing, F. (2023). Ignoring the Effects of Photovoltaic Array Deployment on Greenhouse Gas Emissions May Lead to Overestimation of the Contribution of Photovoltaic Power Generation to Greenhouse Gas Reduction. Environmental Science and Technology 57 (10), 4241-4252. https://doi.org/10.1021/acs.est.3c00479

Downloads

Published

03-12-2025

How to Cite

Mofolasayo, A. (2025). Exploration of solar energy as a means for sustainable management of non-renewable natural resources for present and future generations. Journal of Circular Economy, 3(3). https://doi.org/10.55845/ZYFB4412