Life Cycle Assessment and Circularity Assessment as Complementary Methods for the Circular and Sustainable Redesign of Multi-Material Products: A Case Study on Safety Industrial Footwear

Authors

  • Cris Garcia-Saravia Ortiz-de-Montellano Maastricht University Author
  • Ali Ghannadzadeh Maastricht University Author
  • Yvonne van der Meer Maastricht University Author

DOI:

https://doi.org/10.55845/MBRQ4782

Keywords:

Circular Product Redesign, Circular Economy, Circularity Assessment, Sustainability Assessment, Industrial Footwear, Complex products

Abstract

The transition toward circular and sustainable products is critical for addressing environmental and resource concerns. Complex, multi-material products pose challenges due to their diverse material compositions, lifetimes, and end-of-life pathways. This study integrates Life Cycle Assessment (LCA) and the Material Circularity Indicator (MCI) to assess the sustainable and circular redesign of complex products using safety industrial footwear as a case of a multi-component product with strict safety standards. Results indicate that redesign improves both circularity and environmental performance. The circular model achieves a 51% reduction in environmental impact (normalized through environmental prices) versus the linear model, mainly through material substitution, design for recyclability, and reduced complexity. While circularity and sustainability align at the product level, they do not at the component level, making LCA and MCI complementary. Two decision-support tools were developed: (1) a product-level transition ladder and (2) a prioritization matrix for component-level redesign. This research contributes to the development of integrated assessments and informs policy discussions and design practice related to circular and sustainable products.

References

Ancelina, B., Santoso, A., & Parung, J. (2022). Integration of Life Cycle Sustainability Assessment and Material Circularity Indicator for Circular Business: Case Study of Company XYZ Jakarta. Proceedings of the 3rd Asia Pacific International Conference on Industrial Engineering and Operations Management, 481–492.

Antwi-Afari, P., Ng, S. T., Chen, J., Oluleye, B. I., Antwi-Afari, M. F., & Ababio, B. K. (2023). Enhancing life cycle assessment for circular economy measurement of different case scenarios of modular steel slab. Building and Environment, 239, 110411. https://doi.org/10.1016/J.BUILDENV.2023.110411

Bakker, C. A., Mugge, R., Boks, C., & Oguchi, M. (2021). Understanding and managing product lifetimes in support of a circular economy. Journal of Cleaner Production, 279, 123764. https://doi.org/10.1016/J.JCLEPRO.2020.123764

Bianchi, I., Forcellese, A., Castorani, V., & Buccoliero CETMA, G. (2022). Comparative Life Cycle Assessment of Safety Shoes Toe Caps Manufacturing Processes. https://doi.org/10.21203/RS.3.RS-1207892/V1

Bodoga, A., Sinha, P., Sadat, A., Sayem, M., Majumdar, A., Boggia, A., Nistorac, A., Loghin, M. C., & Isopescu, D. N. (2024). Environmental Impact of Footwear Using Life Cycle Assessment—Case Study of Professional Footwear. Sustainability 2024, Vol. 16, Page 6094, 16(14), 6094. https://doi.org/10.3390/SU16146094

Boyer, R. H. W., Mellquist, A. C., Williander, M., Fallahi, S., Nyström, T., Linder, M., Algurén, P., Vanacore, E., Hunka, A. D., Rex, E., & Whalen, K. A. (2021). Three-dimensional product circularity. Journal of Industrial Ecology, 25(4), 824–833. https://doi.org/10.1111/JIEC.13109

Brändström, J., & Saidani, M. (2022). Comparison between circularity metrics and LCA: A case study on circular economy strategies. Journal of Cleaner Production, 371, 133537. https://doi.org/10.1016/J.JCLEPRO.2022.133537

Cheah, L., Ciceri, N. D., Olivetti, E., Matsumura, S., Forterre, D., Roth, R., & Kirchain, R. (2013). Manufacturing-focused emissions reductions in footwear production. Journal of Cleaner Production, 44, 18–29. https://doi.org/10.1016/J.JCLEPRO.2012.11.037

Cimpan, C., Maul, A., Jansen, M., Pretz, T., & Wenzel, H. (2015). Central sorting and recovery of MSW recyclable materials: A review of technological state-of-the-art, cases, practice and implications for materials recycling. Journal of Environmental Management, 156, 181–199. https://doi.org/10.1016/J.JENVMAN.2015.03.025

Curran, M. A. (2015). Life Cycle Assessment Student Handbook. Wiley.

De Laurentiis, V., Amadei, A., Sanyé-Mengual, E., & Sala, S. (2023). Exploring alternative normalization approaches for life cycle assessment. The International Journal of Life Cycle Assessment, 28(10), 1382–1399. https://doi.org/10.1007/s11367-023-02188-4

De Rosa-Giglio, P., Fontanella, A., Gonzalez-Quijano, G., Ioannidis, I., Nucci, B., & Brugnoli, F. (2018). Leather product environmental footprint category rules (Leather PEFCR). April 2018, 1–160. https://ec.europa.eu/environment/eussd/smgp/pdf/PEFCR_leather.pdf

de Souza Junior, H. R. A., Dantas, T. E. T., Zanghelini, G. M., Cherubini, E., & Soares, S. R. (2020). Measuring the environmental performance of a circular system: Emergy and LCA approach on a recycle polystyrene system. Science of The Total Environment, 726, 138111. https://doi.org/10.1016/J.SCITOTENV.2020.138111

De Vries, J., De Bruyn, S., Boerdijk, S., Juijn, D., Bijleveld, M., Van Der Giesen, C., Korteland, M., Odenhoven, N., Van Santen, W., & Pápai, S. (2024). Environmental Prices Handbook 2024: EU27 version Methodical justification of key indicators used for the valuation of emissions and the environmental impact. www.ce.nl

ecoinvent v3.10 – ecoinvent. (n.d.). Retrieved March 24, 2025, from https://ecoinvent.org/ecoinvent-v3-10/

Ellen MacArthur Foundation. (2015). Circularity indicators: An approach to measuring circularity. http://www.ellenmacarthurfoundation.org/circularity-indicators/.

European Commission. (2015). Circular Economy Action Plan. For a Cleaner and more competitive Europe. https://ec.europa.eu/environment/strategy/circular-economy-action-plan_en

Figge, F., Thorpe, A. S., Givry, P., Canning, L., & Franklin-Johnson, E. (2018). Longevity and Circularity as Indicators of Eco-Efficient Resource Use in the Circular Economy. Ecological Economics, 150, 297–306. https://doi.org/10.1016/J.ECOLECON.2018.04.030

Garcia-Saravia Ortiz-de-Montellano, C., Ghannadzadeh, A., & van der Meer, Y. (2023, July). Quantifying the circularity gap: Life Cycle Assessment (LCA) and Circularity Assessment (CA) as complementary methods for the circular redesign of complex products: A case study of industrial footwear. 11th International Conference on Industrial Ecology.

Garcia-Saravia Ortiz-de-Montellano, C., Ghannadzadeh, A., & van der Meer, Y. (2024, May). Life Cycle Assessment and Circularity Assessment as complementary methods for the circular and sustainable redesign of multi-material industrial footwear. Brightlands Polymer Days: To Bond or Not to Bond.

Garcia-Saravia Ortiz-De-Montellano, C., Samani, P., & van der Meer, Y. (2023). How can the circular economy support the advancement of the Sustainable Development Goals (SDGs)? A comprehensive analysis. Sustainable Production and Consumption, 40. https://doi.org/10.1016/j.spc.2023.07.003

Glogic, E., Sonnemann, G., & Young, S. B. (2021). Environmental Trade-Offs of Downcycling in Circular Economy: Combining Life Cycle Assessment and Material Circularity Indicator to Inform Circularity Strategies for Alkaline Batteries. Sustainability 2021, Vol. 13, Page 1040, 13(3), 1040. https://doi.org/10.3390/SU13031040

Guterres, A. (2018). Climate action and disaster risk reduction | UNDRR. https://www.undrr.org/implementing-sendai-framework/drr-focus-areas/climate-action-and-disaster-risk-reduction

International Organization for Standarization. (2006). ISO – ISO 14044:2006 – Environmental management — Life cycle assessment — Requirements and guidelines. https://www.iso.org/standard/38498.html

ISO 20345. (2021). ISO 20345:2021 – Personal protective equipment — Safety footwear. https://www.iso.org/obp/ui/#iso:std:iso:20345:ed-3:v1:en

Jacobs, C., Soulliere, K., Sawyer-Beaulieu, S., Sabzwari, A., & Tam, E. (2022). Challenges to the Circular Economy: Recovering Wastes from Simple versus Complex Products. Sustainability (Switzerland), 14(5). https://doi.org/10.3390/su14052576

Joseph, K., & Nithya, N. (2008). Material flows in the life cycle of leather Keywords: LCA Leather Resource use Material flow Ecoprofile Sustainable production of leather. https://doi.org/10.1016/j.jclepro.2008.11.018

Kadawo, A., Sadagopan, M., During, O., Bolton, K., & Nagy, A. (2023). Combination of LCA and circularity index for assessment of environmental impact of recycled aggregate concrete. Journal of Sustainable Cement-Based Materials, 12(1), 1–12. https://doi.org/10.1080/21650373.2021.2004562

Kayaçetin, N. C., Verdoodt, S., Lefevre, L., & Versele, A. (2023). Integrated decision support for embodied impact assessment of circular and bio-based building components. Journal of Building Engineering, 63, 105427. https://doi.org/10.1016/J.JOBE.2022.105427

Khadim, N., Agliata, R., Han, Q., & Mollo, L. (2025). From circularity to sustainability: Advancing the whole building circularity indicator with Life Cycle Assessment (WBCI-LCA). Building and Environment, 269, 112413. https://doi.org/10.1016/J.BUILDENV.2024.112413

Kim, J., Yang, Y., Bae, J., & Suh, S. (2013). The Importance of Normalization References in Interpreting Life Cycle Assessment Results. Journal of Industrial Ecology, 17(3), 385–395. https://doi.org/10.1111/J.1530-9290.2012.00535.X

Koundouri, P., Devves, S., Landis, C., Papadaki, L., Koundouri, P., & Papadaki, · L. (2025). A Methodological Approach to Integrate Circularity, Ecosystem Services and the SDGs Under the Life Cycle Assessment Framework. 215–252. https://doi.org/10.1007/978-3-031-85300-5_11

Leslie, H. A., Leonards, P. E. G., Brandsma, S. H., de Boer, J., & Jonkers, N. (2016). Propelling plastics into the circular economy — weeding out the toxics first. Environment International, 94, 230–234. https://doi.org/10.1016/J.ENVINT.2016.05.012

Lifset, R., & Eckelman, M. (2013). Material efficiency in a multi-material world. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1986). https://doi.org/10.1098/RSTA.2012.0002

Lonca, G., Lesage, P., Majeau-Bettez, G., Bernard, S., & Margni, M. (2020). Assessing scaling effects of circular economy strategies: A case study on plastic bottle closed-loop recycling in the USA PET market. Resources, Conservation and Recycling, 162, 105013. https://doi.org/10.1016/J.RESCONREC.2020.105013

Lonca, G., Muggéo, R., Tétreault-Imbeault, H., Bernard, S., & Margni, M. (2018). A Bi-dimensional Assessment to Measure the Performance of Circular Economy: A Case Study of Tires End-of-Life Management. Designing Sustainable Technologies, Products and Policies, 33–42. https://doi.org/10.1007/978-3-319-66981-6_4

Luca, A., Sanchez Domene, D., & Ais, F. A. (2018). Life cycle assessment of two alternative end -of-life scenarios for leather safety shoes. ICAMS – International Conference on Advanced Materials and Systems. https://doi.org/10.24264/icams-2018.XI.6

Luthin, A., Crawford, R. H., & Traverso, M. (2023). Demonstrating circular life cycle sustainability assessment – a case study of recycled carbon concrete. Journal of Cleaner Production, 433, 139853. https://doi.org/10.1016/J.JCLEPRO.2023.139853

Luthin, A., Crawford, R. H., & Traverso, M. (2024). Assessing the circularity and sustainability of circular carpets — a demonstration of circular life cycle sustainability assessment. The International Journal of Life Cycle Assessment, 29(10), 1945–1964. https://doi.org/10.1007/s11367-024-02359-x

Machado, N., & Morioka, S. N. (2021). Contributions of modularity to the circular economy: A systematic review of literature. Journal of Building Engineering, 44, 103322. https://doi.org/10.1016/J.JOBE.2021.103322

Maciel, V. G., Bockorny, G., Domingues, N., Scherer, M. B., Zortea, R. B., & Seferin, M. (2017). Comparative Life Cycle Assessment among Three Polyurethane Adhesive Technologies for the Footwear Industry. ACS Sustainable Chemistry and Engineering, 5(9), 8464–8472. https://doi.org/10.1021/acssuschemeng.7b02516

Miah, J. H., Koh, S. C. L., & Stone, D. (2017). A hybridised framework combining integrated methods for environmental Life Cycle Assessment and Life Cycle Costing. Journal of Cleaner Production, 168, 846–866. https://doi.org/10.1016/j.jclepro.2017.08.187

Milà, L., Domènech, X., Rieradevall, J., Fullana, P., & Puig, R. (1998). Application of life cycle assessment to footwear. International Journal of Life Cycle Assessment, 3(4), 203–208. https://doi.org/10.1007/BF02977570

Navarro, D., Wu, J., Lin, W., Fullana-i-Palmer, P., & Puig, R. (2020). Life cycle assessment and leather production. Journal of Leather Science and Engineering 2020 2:1, 2(1), 1–13. https://doi.org/10.1186/S42825-020-00035-Y

Niero, M. ;, Negrelli, A. J., Hoffmeyer, S. B., Olsen, S. I., & Birkved, M. (2016). Closing the Loop for Aluminium Cans: Life Cycle Assessment of progression in Cradle-to-Cradle certification levels. Journal of Cleaner Production, 126, 352–362. https://doi.org/10.1016/j.jclepro.2016.02.122

Olabi, A. G. (2019). Circular economy and renewable energy. Energy, 181, 450–454. https://doi.org/10.1016/J.ENERGY.2019.05.196

Orgilés-Calpena, E., Arán-Aís, F., Torró-Palau, A. M., & Sánchez, M. A. M. (2019). Adhesives in the footwear industry: A critical review. Reviews of Adhesion and Adhesives, 7(1), 69–91. https://doi.org/10.7569/RAA.2019.097303

Parchomenko, A., De Smet, S., Pals, E., Vanderreydt, I., & Van Opstal, W. (2023). The circular economy potential of reversible bonding in smartphones. Sustainable Production and Consumption, 41, 362–378. https://doi.org/10.1016/J.SPC.2023.08.017

Pizzol, M., Laurent, A., Sala, S., Weidema, B., Verones, F., & Koffler, C. (2017). Normalisation and weighting in life cycle assessment: quo vadis? International Journal of Life Cycle Assessment, 22(6), 853–868. https://doi.org/10.1007/s11367-016-1199-1

Reuter, M. A. (2011). Limits of Design for Recycling and “Sustainability”: A Review. Waste and Biomass Valorization, 2(2), 183–208. https://doi.org/10.1007/s12649-010-9061-3

Rigamonti, L., & Mancini, E. (2021). Life cycle assessment and circularity indicators. The International Journal of Life Cycle Assessment, 26(10), 1937–1942. https://doi.org/10.1007/s11367-021-01966-2

RIVM. (2017). ReCiPe 2016 v1.1 A harmonized life cycle impact assessment method at midpoint and endpoint level Report I: Characterization. www.rivm.nl/en

Rufí-Salís, M., Petit-Boix, A., Villalba, G., Gabarrell, X., & Leipold, S. (2021). Combining LCA and circularity assessments in complex production systems: the case of urban agriculture. Resources, Conservation and Recycling, 166, 105359. https://doi.org/10.1016/J.RESCONREC.2020.105359

Saadé, M., Erradhouani, B., Pawlak, S., Appendino, F., Peuportier, B., & Roux, C. (2022). Combining circular and LCA indicators for the early design of urban projects. International Journal of Life Cycle Assessment, 27(1), 1–19. https://doi.org/10.1007/S11367-021-02007-8

Saidani, M., Bayless, J., Huey, D., Kim, H., & Anderson, K. (2023). LIFE CYCLE ASSESSMENT AND CIRCULAR ECONOMY INDICATORS TO DESIGN SUSTAINABLE ELECTRIC OUTBOARDS: RESULTS FROM WORKSHOPS WITH INDUSTRIAL EXPERTS. Proceedings of the Design Society, 3, 2445–2454. https://doi.org/10.1017/PDS.2023.245

Saidani, M., & Kim, H. (2022). Nexus Between Life Cycle Assessment, Circularity, and Sustainability Indicators—Part I: a Review. Circular Economy and Sustainability, 2(3), 1143–1156. https://doi.org/10.1007/S43615-022-00159-9

Saidani, M., Kravchenko, M., Cluzel, F., Pigosso, D., Leroy, Y., & Kim, H. (2021). Comparing life cycle impact assessment, circularity and sustainability indicators for sustainable design: Results from a hands-on project with 87 engineering students. Proceedings of the Design Society, 1, 681–690. https://doi.org/10.1017/PDS.2021.68

Samani, P. (2023). Synergies and gaps between circularity assessment and Life Cycle Assessment (LCA). Science of The Total Environment, 903, 166611. https://doi.org/10.1016/J.SCITOTENV.2023.166611

Schulte, A., Maga, D., & Thonemann, N. (2021). Combining Life Cycle Assessment and Circularity Assessment to Analyze Environmental Impacts of the Medical Remanufacturing of Electrophysiology Catheters. Sustainability 2021, Vol. 13, Page 898, 13(2), 898. https://doi.org/10.3390/SU13020898

Serweta, W., Gajewski, R., Olszewski, P., Zapatero, A., & Ławińska, K. (2019). Carbon footprint of different kinds of footwear – A comparative study. Fibres and Textiles in Eastern Europe, 137(5), 94–99. https://doi.org/10.5604/01.3001.0013.2907

Stavropoulos, P., Spetsieris, A., & Papacharalampopoulos, A. (2019). A Circular Economy based Decision Support System for the Assembly/Disassembly of Multi-Material Components. Procedia CIRP, 85, 49–54. https://doi.org/10.1016/J.PROCIR.2019.09.033

Steubing, B., de Koning, D., Haas, A., & Mutel, C. L. (2020). The Activity Browser — An open source LCA software building on top of the brightway framework. Software Impacts, 3, 100012. https://doi.org/10.1016/J.SIMPA.2019.100012

Thys, M., Brancart, J., Van Assche, G., Van den Brande, N., & Vendamme, R. (2023). LignoSwitch: A Robust Yet Reversible Bioaromatic Superglue for Enhanced Materials Circularity and Ecodesign. ACS Sustainable Chemistry and Engineering, 11(51), 17941–17950. https://doi.org/https://doi.org/10.1021/acssuschemeng.3c04477

Vadoudi, K., Deckers, P., Demuytere, C., Askanian, H., & Verney, V. (2022). Comparing a material circularity indicator to life cycle assessment: The case of a three-layer plastic packaging. Sustainable Production and Consumption, 33, 820–830. https://doi.org/10.1016/J.SPC.2022.08.004

Walker, S., Coleman, N., Hodgson, P., Collins, N., Brimacombe, L., Walker, S., Coleman, N., Hodgson, P., Collins, N., & Brimacombe, L. (2018). Evaluating the Environmental Dimension of Material Efficiency Strategies Relating to the Circular Economy. Sustainability, 10(3), 666. https://doi.org/10.3390/su10030666

Weiher, N., Mügge, J., Hahn, I., Riedelsheimer, T., & Lindow, K. (2025). Towards a sustainable decision framework with harmonized metrics for circularity and life cycle assessment in manufacturing. In S. Fukushige, T. Nonaka, H. Kobayashi, C. Tokoro, & E. Yamasue (Eds.), EcoDesign for Circular Value Creation: Volume II (pp. 563–575). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-9076-0_33

Wiedemann, S. G., Nguyen, Q. V., & Clarke, S. J. (2022). Using LCA and Circularity Indicators to Measure the Sustainability of Textiles—Examples of Renewable and Non-Renewable Fibres. Sustainability (Switzerland), 14(24), 16683. https://doi.org/10.3390/SU142416683/S1

Xu, X., Baquero, G., Puig, R., Shi, J., Sang, J., & Lin, W. (2015). Carbon Footprint and Toxicity Indicators of Alternative Chromium Free Tanning in China. Journal of the American Leather Chemists Association, 110(05), 130–137. https://journals.uc.edu/index.php/JALCA/article/view/3610

Downloads

Published

20-11-2025

How to Cite

Ortiz-de-Montellano, C. G.-S., Ghannadzadeh, A., & van der Meer, Y. (2025). Life Cycle Assessment and Circularity Assessment as Complementary Methods for the Circular and Sustainable Redesign of Multi-Material Products: A Case Study on Safety Industrial Footwear. Journal of Circular Economy, 3(3). https://doi.org/10.55845/MBRQ4782