BIM to GIS: Multi-Criteria Queries for Material Tracking in Circular Built Environments

Authors

  • Georgios Triantafyllidis Norwegian University of Science and Technology Author
  • Karl-Christian Mahnert Norwegian Wood Technology Institute Author
  • Lizhen Huang Norwegian University of Science and Technology Author

DOI:

https://doi.org/10.55845/LLZN4383

Keywords:

Circular Cities, BIM-GIS Integration, Component Reuse, Material Stock

Abstract

This study proposes a lightweight approach to BIM-GIS integration for circular economy applications, focusing on timber component repurposing in the Norwegian housing stock. Rather than emphasizing detailed geometric representations, we address key challenges in material stock assessment by prioritizing semantic data. Using the Level of Information Need (LOIN) framework, we identify critical parameters for timber reuse based on European standards EN 14080 and EN 14081. We implement a GeoJSON-based method that selectively extracts purpose-specific information from IFC models, achieving an 80.73% reduction in data volume while preserving all required semantic attributes. This enables multi-criteria queries linking 525 timber components to a cadaster dataset of 14,081 detached houses in Trondheim. Validation results confirm complete semantic data retention and sub-3-second query execution on standard GIS hardware. By focusing on essential material attributes rather than computationally intensive 3D models, the method supports scalable material stock assessments and efficient identification of reusable components. These findings demonstrate that selective information extraction enhances computational performance while maintaining decision-critical detail. Future work should explore ontology-driven approaches to improve multi-domain interoperability and enable more advanced semantic querying.

References

Arbabi, H., Lanau, M., Li, X., Meyers, G., Dai, M., Mayfield, M., & Densley Tingley, D. (2022). A scalable data collection, characterization, and accounting framework for urban material stocks. Journal of Industrial Ecology, 26(1), 58–71. https://doi.org/10.1111/jiec.13198

Bache-Andreassen, L. (2009). Harvested wood products in the context of climate change (No. 12; p. 70). SSB. https://www.ssb.no/natur-og-miljo/artikler-og-publikasjoner/harvested-wood-products-in-the-context-of-climate-change

BIM Forum. (2024). Level of Development (LOD) Specification. BIM Forum. https://bimforum.org/resource/lod-level-of-development-lod-specification/

Cartwright, B., Teerihalme, H., Haaspuro, T., Pikkarainen, P., Huuhka, S., Andersen, R., Jensen, L., Tilsted, M., Heunicke, N., Finke, M., Kuschmierz, A. J., Kuchta, K., Savvilotidou, V., Giebelhausen, A., Simpson, D., Childs, P., Small-Warner, K., Jennings, T., & Hobbs, G. (2021). D3.1 State of the art on material flow data in the built environment. In D3.1 State of the art on material flow data in the built environment [Report].

Çetin, S., Raghu, D., Honic, M., Straub, A., & Gruis, V. (2023). Data requirements and availabilities for material passports: A digitally enabled framework for improving the circularity of existing buildings. Sustainable Production and Consumption, 40, 422–437. https://doi.org/10.1016/j.spc.2023.07.011

Eastman, C., Teicholz, P. M., Sacks, R., & Lee, G. (2018). BIM handbook: A guide to building information modeling for owners, managers, designers, engineers and contractors (Third edition.). Wiley.

Espedal, K. J. (2017). From stone to Norwegian wood. International Journal of Computational Methods and Experimental Measurements, 5(6), 985–996. https://doi.org/10.2495/CMEM-V5-N6-985-996

European Committee for Standardization. (2013). EN 14080—Timber structures – Glued laminated timber and glued solid timber – Requirements. CEN.

European Committee for Standardization. (2019). EN 14081-1: Timber structures – Strength graded structural timber with rectangular cross section – Part 1: General requirements. CEN.

European Committee for Standardization. (2020). Building Information Modelling—Level of Information Need—Part 1: Concepts and principles.

FutureBuilt. (2024). FutureBuilt kvalitetskriterier. FutureBuilt. https://www.futurebuilt.no/FutureBuilt-kvalitetskriterier#!/FutureBuilt-kvalitetskriterier

Huang, L., Krigsvoll, G., Johansen, F., Liu, Y., & Zhang, X. (2018). Carbon emission of global construction sector. Renewable and Sustainable Energy Reviews, 81, 1906–1916. https://doi.org/10.1016/j.rser.2017.06.001

Intergovernmental Panel on Climate Change. (2022). Climate Change 2022 Mitigation of Climate Change.

Konietzko, J., Bocken, N., & Hultink, E. J. (2020). Circular ecosystem innovation: An initial set of principles. Journal of Cleaner Production, 253, 119942. https://doi.org/10.1016/j.jclepro.2019.119942

Koutamanis, A., van Reijn, B., & van Bueren, E. (2018). Urban mining and buildings: A review of possibilities and limitations. Resources, Conservation and Recycling, 138, 32–39. https://doi.org/10.1016/j.resconrec.2018.06.024

Liu, A. H., & Ellul, C. (2022). QUANTIFYING GEOMETRIC CHANGES IN BIM-GIS CONVERSION. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, X-4/W2-2022, 185–192. https://doi.org/10.5194/isprs-annals-X-4-W2-2022-185-2022

Liu, X., Wang, X., Wright, G., Cheng, J. C. P., Li, X., & Liu, R. (2017). A State-of-the-Art Review on the Integration of Building Information Modeling (BIM) and Geographic Information System (GIS). ISPRS International Journal of Geo-Information, 6(2), Article 2. https://doi.org/10.3390/ijgi6020053

NBS. (2024). Uniclass 2024. National Building Specification. https://uniclass.thenbs.com/download

Norsk Standard. (2009). Nordiske regler for visuell styrkesortering av trelast—Nordinc visual strength grading rules for timber (No. NS-INSTA:2009).

Ohori, K. A., Biljecki, F., Diakité, A., Krijnen, T., Ledoux, H., & Stoter, J. (2017). TOWARDS AN INTEGRATION of GIS and BIM DATA: WHAT ARE the GEOMETRIC and TOPOLOGICAL ISSUES? 4(4W5), 1–8. Scopus. https://doi.org/10.5194/isprs-annals-IV-4-W5-1-2017

Parezanović, A., Nadaždi, A., Isailović, D., Višnjevac, N., & Petojević, Z. (2025). Mapping the urban building stock for a circular economy by integrating GIS and BIM. A case study from Belgrade, Serbia. Resources, Conservation and Recycling, 215, 108075. https://doi.org/10.1016/j.resconrec.2024.108075

Sani, M. J., Musliman, I. A., & Abdul Rahman, A. (2019). EXTRACTION and TRANSFORMATION of IFC DATA to CITYGML FORMAT. 42(4/W16), 595–601. Scopus. https://doi.org/10.5194/isprs-archives-XLII-4-W16-595-2019

Şenol, H. İ., & Gökgöz, T. (2024). Integration of Building Information modeling (BIM) and Geographic Information System (GIS): A new approach for IFC to CityJSON conversion. Earth Science Informatics. https://doi.org/10.1007/s12145-024-01343-1

Standard Norge. (2016). NS-EN 338:2016—Konstruksjonstrevirke—Fasthetsklasser. Standard Online. https://online.standard.no/nb/ns-en-338-2016

Standard Norge. (2022). NS 3451:2022—Bygningsdelstabell og systemkodetabell for bygninger og tilhørende uteområder (Version 1). Standard Norge. https://online.standard.no/nb/ns-3451-2022

Standard Norge. (2025a). NS 3691-1:2025—Evaluering av returtre—Del 1: Terminologi og generelle regler. Standard Online. https://online.standard.no/nb/ns-3691-1-2025

Standard Norge. (2025b). NS 3691-2:2025—Evaluering av returtre—Del 2: Urenheter. Standard Online. https://online.standard.no/nb/ns-3691-2-2025

Standard Norge. (2025c). NS 3691-3:2025—Evaluering av returtre—Del 3: Visuell styrkesortering. Standard Online. https://online.standard.no/nb/ns-3691-3-2025

Statistics Norway. (2024a). Demolition of buildings, by region, type of building, contents and year. Statbank Norway. SSB. https://www.ssb.no/en/system/

Statistics Norway. (2024b). Existing building stocks. Residential buildings, by region, contents, year and type of building. Statbank Norway. SSB. https://www.ssb.no/en/system/

Statistics Norway. (2024c). Treatment of waste from construction, rehabilitation and demolition of buildings (tonnes), by material, contents, year and treatment. Statbank Norway. SSB. https://www.ssb.no/en/system/

Stouffs, R., Tauscher, H., & Biljecki, F. (2018). Achieving Complete and Near-Lossless Conversion from IFC to CityGML. ISPRS International Journal of Geo-Information, 7(9), Article 9. https://doi.org/10.3390/ijgi7090355

Tsui, T., Wuyts, W., & Van den Berghe, K. (2024). Geographic Information Systems for Circular Cities and Regions. In C. De Wolf, S. Çetin, & N. M. P. Bocken (Eds.), A Circular Built Environment in the Digital Age (pp. 21–40). Springer International Publishing. https://doi.org/10.1007/978-3-031-39675-5_2

United Nations Environment Program. (2012). Sustainable, resource efficient cities—Making it happen. UNEP.

Wang, H., Pan, Y., & Luo, X. (2019). Integration of BIM and GIS in sustainable built environment: A review and bibliometric analysis. Automation in Construction, 103, 41–52. https://doi.org/10.1016/j.autcon.2019.03.005

Zhu, J., & Wu, P. (2022). BIM/GIS data integration from the perspective of information flow. Automation in Construction, 136, 104166. https://doi.org/10.1016/j.autcon.2022.104166

Downloads

Published

22-05-2025

How to Cite

Triantafyllidis, G., Mahnert, K.-C., & Huang, L. (2025). BIM to GIS: Multi-Criteria Queries for Material Tracking in Circular Built Environments. Journal of Circular Economy, 3(2). https://doi.org/10.55845/LLZN4383