April 2025
Outline
Tomczak, A., Benghi, C., van Berlo, L. & Hjelseth, E. (2024). Requiring Circularity Data in BIM With Information Delivery Specification. Journal of Circular Economy, 1(2). https://doi.org/10.55845/REJY5239
Akbarieh, A., Jayasinghe, L. B., Waldmann, D., & Teferle, F. N. (2020). BIM-Based End-of-Lifecycle Decision Making and Digital Deconstruction: Literature Review. Sustainability, 12(7), 2670. https://doi.org/10.3390/su12072670
Amor, R., & Dimyadi, J. (2021). The promise of automated compliance checking. Developments in the Built Environment, 5, 100039. https://doi.org/10.1016/j.dibe.2020.100039
Bellini, A., & Bang, S. (2022). Barriers for data management as an enabler of circular economy: an exploratory study of the Norwegian AEC industry. IOP Conf. Ser.: Earth Environ. Sci, 1122(012047). https://doi.org/10.1088/1755-1315/1122/1/012047
Benghi, C. (2023). buildingSMART/IDS-Audit-tool: Tool to audit the validity of a .ids file (according to the IDSxml standard). buildingSMART International. https://github.com/buildingSMART/IDS-Audit-tool
Bocken, N. M. P., de Pauw, I., Bakker, C., & van der Grinten, B. (2016). Product design and business model strategies for a circular economy. Journal of Industrial and Production Engineering, 33(5), 308–320. https://doi.org/10.1080/21681015.2016.1172124
buildingSMART. (n.d.). IFC4.3.1.0 Documentation. Retrieved August 11, 2023, from https://ifc43-docs.standards.buildingsmart.org/
buildingSMART International. (2023a). IDS: Computer interpretable (XML) standard to define Information Delivery Specifications for BIM. https://github.com/buildingSMART/IDS
buildingSMART International. (2023b). buildingSMART Data Dictionary. https://www.buildingsmart.org/users/services/buildingsmart-data-dictionary/
Çetin, S., Raghu, D., Honic, M., Straub, A., & Gruis, V. (2023). Data requirements and availabilities for material passports: A digitally enabled framework for improving the circularity of existing buildings. Sustainable Production and Consumption 40 (2023), 422–437. https://doi.org/10.1016/j.spc.2023.07.011
Cottafava, D., & Ritzen, M. (2021). Circularity indicator for residential buildings: Addressing the gap between embodied impacts and design aspects. Resources, Conservation and Recycling, 164, 105120. https://doi.org/10.1016/J.RESCONREC.2020.105120
Durmisevic, E., Ciftcioglu, Ő., & Anumba, C. J. (2003). Knowledge model for assessing disassembly potential of structures. Deconstruction and Materials Reuse Proceedings of the 11th Rinker International Conference.
Eastman, C., Lee, J. min, Jeong, Y. suk, & Lee, J. kook. (2009). Automatic rule-based checking of building designs. Automation in Construction, 18(8), 1011–1033. https://doi.org/10.1016/J.AUTCON.2009.07.002
European Commission. (2020). EU Taxonomy – 2020/852 on the establishment of a framework to facilitate sustainable investment, and amending Regulation (EU) 2019/2088. European Parliament. http://data.europa.eu/eli/reg/2020/852/oj
Goddin, J., Marshall, K., Pereira, A., & Sven Herrmann, S. (2019). Circularity Indicators – An Approach to Measuring Circularity – Methodology. In Ellen MacArthur Foundation & ANSYS Granta. Ellen MacArthur Foundation. https://ellenmacarthurfoundation.org/material-circularity-indicator#:~:text=The%20Ellen%20MacArthur%20Foundation%20works,systems%20solutions%20at%20scale%2C%20globally.
GS1. (2023). GTIN Management Standard. GS1.
Hjelseth, E. (2012). Converting performance based regulations into computable rules in BIM based model checking software. EWork and EBusiness in Architecture, Engineering and Construction – Proceedings of the European Conference on Product and Process Modelling 2012, ECPPM 2012, 461–469. https://doi.org/10.1201/B12516-73
Huang, L., Krigsvoll, G., Johansen, F., Liu, Y., & Zhang, X. (2018). Carbon emission of global construction sector. Renewable and Sustainable Energy Reviews, 81, 1906–1916. https://doi.org/10.1016/J.RSER.2017.06.001
International Organization for Standardization. (2020). ISO 20887 Sustainability in buildings and civil engineering works — Design for disassembly and adaptability.
International Organization for Standardization. (2022). ISO 22057:2022 – Sustainability in buildings and civil engineering works — Data templates for the use of environmental product declarations (EPDs) for construction products in building information modelling (BIM). https://www.iso.org/standard/72463.html
Krijnen, T., Moult, D., & IfcOpenShell community. (2023). IfcOpenShell: Open source IFC library and geometry engine (0.7.0).
Lukka, K. (2003). The Constructive Research Approach. In L. Ojala & O.-P. Hilmola (Eds.), Case Study Research in Logistics (B, pp. 83–101).
Meex, E., Hollberg, A., Knapen, E., Hildebrand, L., & Verbeeck, G. (2018). Requirements for applying LCA-based environmental impact assessment tools in the early stages of building design. Building and Environment, 133, 228–236. https://doi.org/10.1016/j.buildenv.2018.02.016
Mestre, A., Fernandes, J., Ferreira, M. T., Gaspar, P., & Göswein, V. (2023). Circular EcoBIM Platform development – Final report. https://circularecobim.eu/library/
Nawrocka, N., Machova, M., Lund Jensen, R., Kanafani, K., Birgisdottir, H., & Hoxha, E. (2023). Influence of BIM’s level of detail on the environmental impact of buildings: Danish context Life cycle inventory (LCI) Global warming potential (GWP) Level of detail (LOD) Building information modelling (BIM). Building and Environment, 245. https://doi.org/10.1016/j.buildenv.2023.110875
Rasmussen, F. N., Malmqvist, T., Moncaster, A., Wiberg, A. H., & Birgisdóttir, H. (2018). Analysing methodological choices in calculations of embodied energy and GHG emissions from buildings. Energy and Buildings, 158, 1487–1498. https://doi.org/10.1016/j.enbuild.2017.11.013
Röck, M., Hollberg, A., Habert, G., & Passer, A. (2018). LCA and BIM: Visualization of environmental potentials in building construction at early design stages. https://doi.org/10.1016/j.buildenv.2018.05.006
Santos, R., Aguiar Costa, A., Silvestre, J. D., & Pyl, L. (2019). Integration of LCA and LCC analysis within a BIM-based environment. https://doi.org/10.1016/j.autcon.2019.02.011
Schartum, D. W. (2018). Digitalisering av offentlig forvaltning – fra lovtekst til programkode. Fagbokforlaget.
Shadram, F., Johansson, T. D., Lu, W., Schade, J., & Olofsson, T. (2016). An integrated BIM-based framework for minimizing embodied energy during building design. Energy and Buildings, 128, 592–604. https://doi.org/10.1016/j.enbuild.2016.07.007
Solihin, W., Dimyadi, J., Lee, Y.-C., Eastman, C., & Amor, R. (2017). The Critical Role of Accessible Data for BIM-Base’\d Automated Rule Checking Systems. Lean and Computing in Construction Congress – Volume 1: Proceedings of the Joint Conference on Computing in Construction, 53–60. https://doi.org/10.24928/JC3-2017/0161
Soust-Verdaguer, B., Llatas, C., & García-Martínez, A. (2017). Critical review of bim-based LCA method to buildings. Energy and Buildings, 136, 110–120. https://doi.org/10.1016/j.enbuild.2016.12.009
The Norwegian EPD Foundation. (2021). EPD-Norge.no. https://www.epd-norge.no/
Tomczak, A. (2023). Information Delivery Specification for circularity of buildings. https://doi.org/10.5281/zenodo.8393785
Tomczak, A., Berlo, L. v, Krijnen, T., Borrmann, A., & Bolpagni, M. (2022). A review of methods to specify information requirements in digital construction projects. IOP Conference Series: Earth and Environmental Science, 1101(9), 092024. https://doi.org/10.1088/1755-1315/1101/9/092024
Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third-party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
DSRPT is an education technology start-up in stealth mode.
Circular Economy is our first venture. We are on a mission to disrupt higher education. If you wish to learn more about us, drop us a message: dsrpt@circular-economy.org