Towards Sustainable Energy: Economic and Environmental Factors Influencing Feasibility of Agricultural Waste Derived Biogas for Electricity Systems
Abstract
More than 70% of the world’s electricity generation comes from nonrenewable energy sources, which can cause environmental damage. However, alternative energy sources can bring environmental and economic benefits to companies and society. This study aims (i) to unveil the main economic tools and methods used to determine economic feasibility of using agricultural wastes for biogas and electricity generation systems, as well as the environmental aspects that hold influence over it, (ii) to identify the most relevant recent studies and main researchers in this field globally, and (iii) to propose a future agenda for the field. Employing a systematic literature review, a total of 51 articles were selected, and few characteristics were analyzed in terms of bibliometry, such as authorship, type of study, journals, and country. The economic viability analysis explored attributes such as payback, net present value, sensitivity analysis, internal rate of return, and cost-benefit. From an environmental perspective, life cycle assessment, as a technique, and circular economy, as an approach, have been frequently employed in this field. The analysis revealed that Europe (mainly Sweden and Belgium) emerged as the most important continent to develop studies on this topic. However, China and Brazil have shown a recent increase in the number of publications. Notably, no well-known authors were identified as working on the theme. In terms of types of study, case studies accounted for 80% of the final portfolio. Moreover, 60% of the documents analyzed demonstrated economic viability. This study can contribute to understanding the potential environmental impacts of electricity generation from biogas and assisting in decision-making within the public sector.
DOI: https://doi.org/10.55845/BCMU9175
References
Akbulut, A., Kose, R. & Akbulut, A. (2014). Technical and economic assessments of biogas production in a family size digester utilizing different feedstock rotations: Döğer case study. International Journal of Green Energy, 11, 2, 113-128. https://doi.org/10.1080/15435075.2012.752374
Ali, G., Bashir, M. K., Ali, H. & Bashir, M. H. (2016). Utilization of rice husk and poultry wastes for renewable energy potential in Pakistan: An economic perspective. Renewable and Sustainable Energy Reviews, 61, 25-29. https://doi.org/10.1016/j.rser.2016.03.014
Amiri, S., Henning, D. & Karlsson, B. G. (2013). Simulation and introduction of a CHP plant in a Swedish biogas system. Renewable Energy, 49, 242-249. https://doi.org/10.1016/j.renene.2012.01.022
Balussou, D., Kleyböcker, A., McKenna, R., Möst, D. & Fichtner, W. (2012). An economic analysis of three operational co-digestion biogas plants in Germany. Waste and Biomass Valorization, 3, 1, 23-41. https://doi.org/10.1007/s12649-011-9094-2
Barros, M. V., Salvador, R., Piekarski, C. M., de Francisco, A. C., & Freire, F. M. C. S. (2020). Life cycle assessment of electricity generation: a review of the characteristics of existing literature. The International Journal of Life Cycle Assessment, 25, 36-54. https://doi.org/10.1007/s11367-019-01652-4
Barros, M. V., Salvador, R., Gallego-Schmid, A., & Piekarski, C. M. (2023). Circularity measurement of external resource flows in companies: The circular flow tool. Waste Management, 158, 136-145. https://doi.org/10.1016/j.wasman.2023.01.001
Bertolino, A. M., Giganti, P., dos Santos, D. D., & Falcone, P. M. (2023). A matter of energy injustice? A comparative analysis of biogas development in Brazil and Italy. Energy Research & Social Science, 105, 103278. https://doi.org/10.1016/j.erss.2023.103278
Braga, L. B., Silveira, J. L., Da Silva, M. E., Tuna, C. E., Machin, E. B. & Pedroso, D. T. Hydrogen production by biogas steam reforming: A technical, economic and ecological analysis. Renewable and Sustainable Energy Reviews, 28, 166-173. https://doi.org/10.1016/j.rser.2013.07.060
Calise, F., Cremonesi, C., di Vastogirardi, G. D. N. & d’Accadia, M. D. (2015). Technical and Economic Analysis of a Cogeneration Plant Fueled by Biogas Produced From Livestock Biomass. Energy Procedia, 82, 666-673. https://doi.org/10.1016/j.egypro.2015.12.024
Carter, E., Shan, M., Zhong, Y., Ding, W., Zhang, Y., Baumgartner, J., & Yang, X. (2018). Development of renewable, densified biomass for household energy in China. Energy for Sustainable Development, 46, 42-52. https://doi.org/10.1016/j.esd.2018.06.004
Cerón, I. X., Higuita, J. C. & Cardona, C. A. (2015). Analysis of a biorefinery based on Theobroma grandiflorum (copoazu) fruit. Biomass Conversion and Biorefinery, 5, 2, 183-194. https://doi.org/10.1007/s13399-014-0144-4ISO
Chakma, S., Ranjan, A., Choudhury, H. A., Dikshit, P. K. & Moholkar, V. S. (2016). Bioenergy from rice crop residues: role in developing economies. Clean Technologies and Environmental Policy, 18, 2, 373-394. https://doi.org/10.1007/s10098-015-1051-5
Chang, C. W., Lee, T. H., Lin, W. T. & Chen, C. H. (2015). Electricity generation using biogas from swine manure for farm power requirement. International Journal of Green Energy, 12, 4, 339-346. https://doi.org/10.1080/15435075.2013.835263
Chen, B. & Chen, S. (2013). Life cycle assessment of coupling household biogas production to agricultural industry: A case study of biogas-linked persimmon cultivation and processing system. Energy Policy, 62, 707-716. https://doi.org/10.1016/j.enpol.2013.07.084
Cortez, S. C., Cherri, A. C., Jugend, D., Jesus, G. M., & Bezerra, B. S. (2022). How Can Biodigesters Help Drive the Circular Economy? An Analysis Based on the SWOT Matrix and Case Studies. Sustainability, 14(13), 7972.
de Jesus, R. H. G., Barros, M. V., Salvador, R., de Souza, J. T., Piekarski, C. M., & de Francisco, A. C. (2021). Forming clusters based on strategic partnerships and circular economy for biogas production: A GIS analysis for optimal location. Biomass and Bioenergy, 150, 106097. https://doi.org/10.1016/j.biombioe.2021.106097
de Sousa Bernardes, P. A. C., Aquila, G., de Oliveira Pamplona, E., Rocha, L. C. S., & Junior, P. R. (2022). Net metering and tax incentives for distributed generation in Brazil: Economic impact analysis for swine biogas. Journal of Cleaner Production, 375, 134138. https://doi.org/10.1016/j.jclepro.2022.134138
Djatkov, D., Effenberger, M., Lehner, A., Martinov, M., Tesic, M. & Gronauer, A. (2012). New method for assessing the performance of agricultural biogas plants. Renewable Energy, 40, 1, 104-112. https://doi.org/10.1016/j.renene.2011.09.026
Dos Santos, R. E., Dos Santos, I. F. S., Barros, R. M., Bernal, A. P., Tiago Filho, G. L., & da Silva, F. D. G. B. (2019). Generating electrical energy through urban solid waste in Brazil: An economic and energy comparative analysis. Journal of environmental management, 231, 198-206. https://doi.org/10.1016/j.jenvman.2018.10.015
Edwin, M. & Sekhar, S. J. (2014). Techno-economic studies on hybrid energy based cooling system for milk preservation in isolated regions. Energy Conversion and Management, 86, 1023-1030. https://doi.org/10.1016/j.enconman.2014.06.075
Elo, S., & Kyngäs, H. (2008). The qualitative content analysis process. Journal of Advanced Nursing, 62(1), 107-115. https://doi.org/10.1111/j.1365-2648.2007.04569.x
ESCAP, U. (2007). Recent developments in biogas technology for poverty reduction and sustainable development. https://repository.unescap.org/bitstream/handle/20.500.12870/4674/ESCAP-2007-RP-Recent-Developments-Biogas-Technology-Poverty-Reduction-Sustainable-Development.pdf?sequence=1&isAllowed=y
EU (European Union) (2023). Directive (EU) 2023/2413 of the European Parliament and of the Council of 18 October 2023 amending Directive (EU) 2018/2001, Regulation (EU) 2018/1999 and Directive 98/70/EC as regards the promotion of energy from renewable sources, and repealing Council Directive (EU) 2015/652. http://data.europa.eu/eli/dir/2023/2413/oj
Fei, F., Wen, Z., Huang, S., & De Clercq, D. (2018). Mechanical biological treatment of municipal solid waste: Energy efficiency, environmental impact and economic feasibility analysis. Journal of Cleaner Production, 178, 731-739. https://doi.org/10.1016/j.jclepro.2018.01.060
Felca, A. T. A., Barros, R. M., Tiago Filho, G. L., dos Santos, I. F. S., & Ribeiro, E. M. (2018). Analysis of biogas produced by the anaerobic digestion of sludge generated at wastewater treatment plants in the South of Minas Gerais, Brazil as a potential energy source. Sustainable cities and society, 41, 139-153. https://doi.org/10.1016/j.scs.2018.04.035
Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., … & Suh, S. (2009). Recent developments in life cycle assessment. Journal of environmental management, 91(1), 1-21. https://doi.org/10.1016/j.jenvman.2009.06.018
Grell, T., Marchuk, S., Williams, I., McCabe, B. K., & Tait, S. (2023). Resource recovery for environmental management of dilute livestock manure using a solid-liquid separation approach. Journal of Environmental Management, 325, 116254. https://doi.org/10.1016/j.jenvman.2022.116254
Gupta, P., Kurien, C., & Mittal, M. (2023). Biogas (a promising bioenergy source): A critical review on the potential of biogas as a sustainable energy source for gaseous fuelled spark ignition engines. International Journal of Hydrogen Energy, 48(21), 7747-7769. https://doi.org/10.1016/j.ijhydene.2022.11.195
Gutierrez, E. C., Xia, A. & Murphy, J. D. (2016). Can slurry biogas systems be cost effective without subsidy in Mexico?. Renewable Energy, 95, 22-30. https://doi.org/10.1016/j.renene.2016.03.096
Gwavuya, S. G., Abele, S., Barfuss, I., Zeller, M. & Müller, J. (2012) Household energy economics in rural Ethiopia: A cost-benefit analysis of biogas energy. Renewable Energy, 48, 202-209. https://doi.org/10.1016/j.renene.2012.04.042
He, G. X., Yan, H. G., Chen, L., & Tao, W. Q. (2020). Economic dispatch analysis of regional Electricity–Gas system integrated with distributed gas injection. Energy, 201, 117512. https://doi.org/10.1016/j.energy.2020.117512
He, Y., Bagley, D. M., Leung, K. T., Liss, S. N. & Liao, B. Q. (2012). Recent advances in membrane technologies for biorefining and bioenergy production. Biotechnology Advances, 30, 4, 817-858. https://doi.org/10.1016/j.biotechadv.2012.01.015
Hublin, A., Schneider, D. R. & Džodan, J. (2014). Utilization of biogas produced by anaerobic digestion of agro-industrial waste: energy, economic and environmental effects. Waste Management and Research, 32, 7, 626-633. https://doi.org/10.1177/0734242X14539789
Hughes, A. D., Kelly, M. S., Black, K. D., & Stanley, M. S. (2012). Biogas from Macroalgae: is it time to revisit the idea?. Biotechnology for Biofuels, 5, 1, 86. https://doi.org/10.1186/1754-6834-5-86
Huiru, Z., Yunjun, Y., Liberti, F., Pietro, B., & Fantozzi, F. (2019). Technical and economic feasibility analysis of an anaerobic digestion plant fed with canteen food waste. Energy Conversion and Management, 180, 938-948. https://doi.org/10.1016/j.enconman.2018.11.045
IBGE. (2017). Cidades – município de Castro. Disponível em: https://cidades.ibge.gov.br/brasil/pr/castro/pesquisa/18/16459?indicador=16559&tipo=ranking
Ilic, D. D., Dotzauer, E., Trygg, L. & Broman, G. (2014). Integration of biofuel production into district heating–part I: an evaluation of biofuel production costs using four types of biofuel production plants as case studies. Journal of Cleaner Production, 69, 176-187. https://doi.org/10.1016/j.jclepro.2014.01.035
Ioannou-Ttofa, L., Foteinis, S., Moustafa, A. S., Abdelsalam, E., Samer, M., & Fatta-Kassinos, D. (2021). Life cycle assessment of household biogas production in Egypt: Influence of digester volume, biogas leakages, and digestate valorization as biofertilizer. Journal of Cleaner Production, 286, 125468. https://doi.org/10.1016/j.jclepro.2020.125468
ISO. International Organization for Standardization. Environmental Management—Life Cycle Assessment—Principles and Framework, 2nd ed.; ISO 14040:2006; ISO: Geneva, Switzerland, 2006a.
ISO. International Organization for Standardization. Environmental Management—Life Cycle Assessment—Requirements and Guidelines, 1st ed.; ISO 14044:2006; ISO: Geneva, Switzerland, 2006b.
Ji, L., Liu, Z., Wu, Y., & Huang, G. (2022). Techno-economic feasibility analysis of optimally sized a biomass/PV/DG hybrid system under different operation modes in the remote area. Sustainable Energy Technologies and Assessments, 52, 102117. https://doi.org/10.1016/j.seta.2022.102117
Juul, N., Münster, M., Ravn, H. & Söderman, M. L. (2013). Challenges when performing economic optimization of waste treatment: a review. Waste Management, 33, 9, 1918-1925. https://doi.org/10.1016/j.wasman.2013.04.015
Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Technologies for biogas to electricity conversion. Energy Reports, 8, 774-786. https://doi.org/10.1016/j.egyr.2022.11.007
Kalair, A., Abas, N., Saleem, M. S., Kalair, A. R., & Khan, N. (2021). Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage, 3(1), e135. https://doi.org/10.1002/est2.135
Kang, J. Y., Kim, T. S. & Hur, K. B. (2014). Comparative economic analysis of gas turbine-based power generation and combined heat and power systems using biogas fuel. Energy, 67, 309-318. https://doi.org/10.1016/j.energy.2014.01.009
Khan, E. U., Mainali, B., Martin, A. & Silveira, S. (2014). Techno-economic analysis of small scale biogas based polygeneration systems: Bangladesh case study. Sustainable Energy Technologies and Assessments, 7, 68-78. https://doi.org/10.1016/j.seta.2014.03.004
Lantz, M. (2012). The economic performance of combined heat and power from biogas produced from manure in Sweden–A comparison of different CHP technologies. Applied Energy, 98, 502-511. https://doi.org/10.1016/j.apenergy.2012.04.015
Lauer, M., Hansen, J. K., Lamers, P., & Thrän, D. (2018). Making money from waste: The economic viability of producing biogas and biomethane in the Idaho dairy industry. Applied Energy, 222, 621-636. https://doi.org/10.1016/j.apenergy.2018.04.026
Lazaro, L. L. B., Grangeia, C. S., Santos, L., & Giatti, L. L. (2023). What is green finance, after all?–Exploring definitions and their implications under the Brazilian biofuel policy (RenovaBio). Journal of Climate Finance, 2, 100009. https://doi.org/10.1016/j.jclimf.2023.100009
Liu, Z., & Wang, X. (2020). Manure treatment and utilization in production systems. In Animal agriculture (pp. 455-467). Academic Press. https://doi.org/10.1016/B978-0-12-817052-6.00026-4
Lovrak, A., Pukšec, T., & Duić, N. (2020). A Geographical Information System (GIS) based approach for assessing the spatial distribution and seasonal variation of biogas production potential from agricultural residues and municipal biowaste. Applied energy, 267, 115010. https://doi.org/10.1016/j.apenergy.2020.115010
Mendoza, J. M. F., Gallego-Schmid, A., Velenturf, A. P., Jensen, P. D., & Ibarra, D. (2022). Circular economy business models and technology management strategies in the wind industry: Sustainability potential, industrial challenges and opportunities. Renewable and Sustainable Energy Reviews, 163, 112523. https://doi.org/10.1016/j.rser.2022.112523
Miramontes-Martínez, L. R., Rivas-García, P., Briones-Cristerna, R. A., Abel-Seabra, J. E., Padilla-Rivera, A., Botello-Álvarez, J. E., … & Levasseur, A. (2022). Potential of electricity generation by organic wastes in Latin America: A techno-economic-environmental analysis. Biomass Conversion and Biorefinery, 1-12. https://doi.org/10.1007/s13399-022-03393-1
Monti, A., & Polugodina, M. (2021). Biofuel and Biogas Policies: Economic, Regulatory, and Sustainability Challenges. In Affordable and Clean Energy (pp. 87-104). Cham: Springer International Publishing.
Moraes, B. S., Junqueira, T. L., Pavanello, L. G., Cavalett, O., Mantelatto, P. E., Bonomi, A. & Zaiat, M. (2014). Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense?. Applied Energy, 113, 825-835. https://doi.org/10.1016/j.apenergy.2013.07.018
Moura, C. H. S., Silveira, J. L., & de Queiróz Lamas, W. (2020). Dynamic production, storage, and use of renewable hydrogen: A technical-economic-environmental analysis in the public transport system in São Paulo state, Brazil. International Journal of Hydrogen Energy, 45(56), 31585-31598. https://doi.org/10.1016/j.ijhydene.2020.08.198
Mukherjee, P. K., Das, B., Bhardwaj, P. K., Tampha, S., Singh, H. K., Chanu, L. D., … & Devi, S. I. (2023). Socio-economic sustainability with circular economy—an alternative approach. Science of the Total Environment, 904, 166630. https://doi.org/10.1016/j.scitotenv.2023.166630
Nadaleti, W. C., dos Santos, G. B., & Lourenço, V. A. (2020). Integration of renewable energies using the surplus capacity of wind farms to generate H2 and electricity in Brazil and in the Rio Grande do Sul state: energy planning and avoided emissions within a circular economy. International Journal of Hydrogen Energy, 45(46), 24190-24202. https://doi.org/10.1016/j.ijhydene.2020.06.226
Nasir, I. M., Mohd Ghazi, T. I., & Omar, R. (2012). Anaerobic digestion technology in livestock manure treatment for biogas production: a review. Engineering in Life Sciences, 12(3), 258-269. https://doi.org/10.1002/elsc.201100150
Nogueira, C. E. C., de Souza, S. N. M., Micuanski, V. C. & Azevedo, R. L. (2015). Exploring possibilities of energy insertion from vinasse biogas in the energy matrix of Paraná State, Brazil. Renewable and Sustainable Energy Reviews, 48, 300-305. https://doi.org/10.1016/j.rser.2015.04.023
Nzila, C., Dewulf, J., Spanjers, H., Tuigong, D., Kiriamiti, H. & Van Langenhove, H. (2012). Multi criteria sustainability assessment of biogas production in Kenya. Applied Energy, 93, 496-506. https://doi.org/10.1016/j.apenergy.2011.12.020
Obuobi, B., Adu-Gyamfi, G., Adjei, M., & Nketiah, E. (2022). Technologies potential and economic viability analysis of deriving electricity from Municipal Solid Waste in Kumasi, Ghana. Energy for Sustainable Development, 68, 318-331. https://doi.org/10.1016/j.esd.2022.04.011
Pääkkönen, A., Tolvanen, H., & Rintala, J. (2018). Techno-economic analysis of a power to biogas system operated based on fluctuating electricity price. Renewable Energy, 117, 166-174. https://doi.org/10.1016/j.renene.2017.10.031
Pablo-Romero, M. D. P., Sánchez-Braza, A., Salvador-Ponce, J., & Sánchez-Labrador, N. (2017). An overview of feed-in tariffs, premiums and tenders to promote electricity from biogas in the EU-28. Renewable and Sustainable Energy Reviews, 73, 1366-1379. https://doi.org/10.1016/j.rser.2017.01.132
Pereira, A. D. S. A., da Silva, V. O., dos Santos, E. M., & Peyerl, D. (2023a). Geopolitical Losses and Gains from the Pathways of the Energy Transition in Brazil. In Energy Transition in Brazil (pp. 37-56). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-21033-4_3
Pereira, R. B., Salvador, R., Sales, G. F., Obal, J. S., Piekarski, C. M., & de Francisco, A. C. (2023b). Energy from livestock waste: Using circular economy and territorial intelligence to build sustainable businesses. Energy & Environment, 34(6), 2072-2092. https://doi.org/10.1177/0958305X221108495
Pin, B. V. R., Barros, R. M., Lora, E. E. S., & dos Santos, I. F. S. (2018). Waste management studies in a Brazilian microregion: GHG emissions balance and LFG energy project economic feasibility analysis. Energy Strategy Reviews, 19, 31-43. https://doi.org/10.1016/j.esr.2017.11.002
Salvador, R., Barros, M.V., Rosario, J.G.P., Piekarski, C.M., Luz, L.M. & Francisco, A.C. (2019). Life Cycle Assessment of Electricity from Biogas: a Systematic Literature Review. Environmental Progress & Sustainable Energy. 38,4, 13133. https://doi.org/10.1002/ep.13133
Salvador, R., Barros, M. V., Rosário, J. G. D. P. D., Piekarski, C. M., da Luz, L. M., & de Francisco, A. C. (2019). Life cycle assessment of electricity from biogas: A systematic literature review. Environmental Progress & Sustainable Energy, 38(4), 13133. https://doi.org/10.1002/ep.13133
Salvador, R., Barros, M. V., Pieroni, M., Silva, D. A. L., Freire, F., & De Francisco, A. C. (2023). Overarching business models for a circular bioeconomy: Systematising archetypes. Sustainable Production and Consumption, 43, 349-362. https://doi.org/10.1016/j.spc.2023.11.010
Siefert, N. S. & Litster, S. (2014). Exergy & economic analysis of biogas fueled solid oxide fuel cell systems. Journal of Power Sources, 272, 386-397. https://doi.org/10.1016/j.jpowsour.2014.08.044
Sigarchian, S. G., Paleta, R., Malmquist, A. & Pina, A. (2015). Feasibility study of using a biogas engine as backup in a decentralized hybrid (PV/wind/battery) power generation system–Case study Kenya. Energy, 90, 1830-1841. https://doi.org/10.1016/j.energy.2015.07.008
Starr, K., Ramirez, A., Meerman, H., Villalba, G. & Gabarrell, X. (2015). Explorative economic analysis of a novel biogas upgrading technology using carbon mineralization. A case study for Spain. Energy, 79, 298-309. https://doi.org/10.1016/j.energy.2014.11.015
Sullivan, W.G. M., Wicks, E. & Koelling, C. P. (2015). Engineering Economy. 16. ed. United States Of America: Pearson Higher Education, 701 p.
Tran, T. T., & Smith, A. D. (2018). Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies. Applied energy, 216, 157-171. https://doi.org/10.1016/j.apenergy.2018.02.024
Teghammar, A., Forgács, G., Horváth, I. S. & Taherzadeh, M. J. (2014). Techno-economic study of NMMO pretreatment and biogas production from forest residues. Applied Energy, 116, 125-133. https://doi.org/10.1016/j.apenergy.2013.11.053
Tolmasquim, M. T., de Barros Correia, T., Porto, N. A., & Kruger, W. (2021). Electricity market design and renewable energy auctions: The case of Brazil. Energy Policy, 158, 112558. https://doi.org/10.1016/j.enpol.2021.112558
Torquati, B., Venanzi, S., Ciani, A., Diotallevi, F. & Tamburi, V. (2014). Environmental sustainability and economic benefits of dairy farm biogas energy production: A case study in Umbria. Sustainability, 6, 10, 6696-6713. https://doi.org/10.3390/su6106696
Uihlein, A. & Schebek, L. (2009). Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment. Biomass Bioenergy, 33, 793-802. https://doi.org/10.1016/j.biombioe.2008.12.001
UN (United Nations). 17 Goal to Transform our World: Goal 7: Ensure Access to Affordable, Reliable, Sustainable and Modern Energy for All. (2015). Available online: http://www.un.org/
sustainabledevelopment/energy/ (accessed on 3 March 2020).
Van Dael, M., Van Passel, S., Pelkmans, L., Guisson, R., Reumermann, P., Luzardo, Witters, N. & Broeze, J. (2013). A techno-economic evaluation of a biomass energy conversion park. Applied Energy, 104, 611-622. https://doi.org/10.1016/j.apenergy.2012.11.071
Venkatesh, G., Nyflött, Å., Bonnerup, C., & Lestelius, M. (2018). An economic-environmental analysis of selected barrier-coating materials used in packaging food products: a Swedish case study. Environment, Development and Sustainability, 20(4), 1483-1497. https://doi.org/10.1007/s10668-017-9948-2
Wang, R., Hsu, S. C., Zheng, S., Chen, J. H., & Li, X. I. (2020). Renewable energy microgrids: Economic evaluation and decision making for government policies to contribute to affordable and clean energy. Applied Energy, 274, 115287. https://doi.org/10.1016/j.apenergy.2020.115287
Wang, X., Chen, Y., Sui, P., Gao, W., Qin, F., Wu, X., Xiong, J. (2014). Efficiency and sustainability analysis of biogas and electricity production from a large-scale biogas project in China: an emergy evaluation based on LCA. Journal of Cleaner Production. 65, 234-245. https://doi.org/10.1016/j.jclepro.2013.09.001
Wu, B., Zhang, X., Shang, D., Bao, D., Zhang, S. & Zheng, T. (2016). Energetic-environmental-economic assessment of the biogas system with three utilization pathways: Combined heat and power, biomethane and fuel cell. Bioresource Technology, 214, 722-728. https://doi.org/10.1016/j.biortech.2016.05.026
Yoshizaki, T., Shirai, Y., Hassan, M. A., Baharuddin, A. S., Abdullah, N. M. R., Sulaiman, A. & Busu, Z. Economic analysis of biogas and compost projects in a palm oil mill with clean development mechanism in Malaysia. Environment, Development and Sustainability, 14, 6, 1065-1079. https://doi.org/10.1007/s10668-012-9371-7
Zangarini, S., Pepè Sciarria, T., Tambone, F., & Adani, F. (2020). Phosphorus removal from livestock effluents: recent technologies and new perspectives on low-cost strategies. Environmental Science and Pollution Research, 27, 5730-5743. https://doi.org/10.1007/s11356-019-07542-4
Zastempowski, M. (2023). Analysis and modeling of innovation factors to replace fossil fuels with renewable energy sources-Evidence from European Union enterprises. Renewable and Sustainable Energy Reviews, 178, 113262 https://doi.org/10.1016/j.rser.2023.113262
Zieliński, M., Dębowski, M., Kisielewska, M., Nowicka, A., Rokicka, M., & Szwarc, K. (2019). Cavitation-based pretreatment strategies to enhance biogas production in a small-scale agricultural biogas plant. Energy for Sustainable Development, 49, 21-26. https://doi.org/10.1016/j.esd.2018.12.007
Zubair, M., Wang, S., Zhang, P., Ye, J., Liang, J., Nabi, M., … & Cai, Y. (2020). Biological nutrient removal and recovery from solid and liquid livestock manure: Recent advance and perspective. Bioresource technology, 301, 122823. https://doi.org/10.1016/j.biortech.2020.122823
How to Cite This Article
Barros, M. V., Dourado, R. A., Ostwal, M. C., Salvador, R, Lermen, F. H., Piekarski, C. M. (2025). Towards Sustainable Energy: Economic and Environmental Factors Influencing Feasibility of Agricultural Waste Derived Biogas for Electricity Systems. Journal of Circular Economy, 3(3). https: https://doi.org/10.55845/BCMU9175OI
Copyright
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Author Notes
Murillo Vetroni Barros [1] *, Renan Alevs Dourado [2], Mayara Cristina Ostwal [2], Rodrigo Salvador [3], Fernando Henrique Lermen [1] and Cassiano Moro Piekarski [2]
- [1] Department of Industrial Engineering, State University of Paraná, R. Comendador Correia Júnior, 117, 83203-560, Paranaguá, Brazil.
- [2] Universidade Tecnológica Federal do Paraná, R. Doutor Washington Subtil Chueire, 330 – Jardim Carvalho, Ponta Grossa – PR, 84017-220.
- [3]Technical University of Denmark, Department of Engineering Technology and Didactics, Lautrupvang 15, Building Ballerup / Room E2.12, DK-2750 Ballerup, Denmark.
- * Corresponding author: [email protected]
Published Details: Received: 17.12.2024 / Accepted: 16.06.2025 / Published: 07.07.2025